
Pre-Processing of Time-Series Data for a Neural

Network

October 14, 2016

1 Overview

What We Have

Let x(t) denote the demand at time-step t. Let T be the most recent time-step,
and assume we have access to the historical demand data

x(1), x(2), . . . , x(T − 1).

What We Want to Predict

Our first goal is to predict x(T), but it is also a goal to predict x(T + 1) and in
fact x(T + s) for an arbitrary horizon s. There are three ways to do this1:

• train a network to predict x(T + s)

• train a network to predict all of x(T), x(T + 1), . . . , x(T + s)

• train a network to predict just x(T) and iterate using previous predictions
as historical data until we’ve found x(T+1), then x(T+2), and eventually
x(T + s).

How We Predict

We want our forecasting to work as follows. We choose a vector y that describes
previous demand in some way, and we hope that when we input such a vector
into our neural network, the output is a good indicator of demand in the next
time-step (or the next s time-step units, as discussed above).

To train the network, we will input vectors y1, y2, . . . that describe historical
demand, meaning the demand in subsequent time-steps is known. Say a given
input yi describes demand up to time-step k: we want the output of the NN to
be approximately x(k + 1) (or x(k + s), as discussed above).

1From the article Time Series Sampling Using Neural Networks at
https://www.cs.cmu.edu/afs/cs/academic/class/15782-f06/slides/timeseries.pdf

1

If the output from the neural network after inputting this yi does not match
x(k + 1) (or x(k + s)), then we backpropogate (change the NN’s weights) so
that the NN will respond correctly to this input. If the output is correct, then
we train on another data vector. A given vector may need to be inputted
and backpropogated several times before the network responds correctly to all
training vectors.

Once the NN responds correctly to all the input vectors describing historical
data, it should be a good predictor for future data!

In practice, one must reserve some amount of historical data as “test” data,
which is not part of the training but to which, one would hope, the network
can respond correctly. If the NN doesn’t respond correctly to the test data, the
model is either overfitted or underfitted, and more training or more intelligent
training is required. Including more nodes than necessary gives the potential for
overfitting (and requires more computational work). Including too few nodes
can lead to an under-fitted model.

Crafting Input y

Indexing yi: to what does i correspond?

The input vectors y1, y2, . . . each describe some period of historical data.
Say yi includes historical data up to time-step k, as above. Then yi is the

best suited input vector for making predictions about time-step k+ 1, although
it can also make predictions about future time-steps (k + 2), . . . , (k + s).

It may be useful to associate yi with time-step k by assuming that i = k,
and that the index of the input vectors y1, y2, . . . all indicate the (chronological)
first time-step that their output is able to predict. For example, the historical
descriptor that incorporates the most current demand information will always
be used to make actual (not training) predictions, and will be called yT ; the
descriptor that informs predictions at time-step t is yt.

Now we can assert that we have exactly one input vector per time-step,
which together make up

y1, . . . , yT .

.

Complexity of NN Algorithm vs. Dimension of yi

In general, neural networks do O(W 3) operations per iteration of backpropoga-
tion, where W is the total number of nodes. The dimension of the inputs yi
determines the number of input nodes (nodes in the first layer of the neural
network). Input nodes may be a small minority of total nodes (most nodes are
in “hidden layers”), so inputting more detailed data may not add much calcula-
tion per iteration, but it can certainly delay convergence by adding complexity
to the hidden funtion that the neural network is approximating. As a result,
more (possibly exponentially more) iterations are needed before the NN makes
accurate predictions with higher-dimensional input.

2

2 Sampling Demand for NN Input

Uniform Sampling: Most-Recent Samples

The previous k samples of historical demand are x(T − 1), . . . , x(T − k), and
we can certainly create an input vector yT whose components are those values,
based on which the NN would output a prediction for x(T). In general, the
input vector whose output approximates x(t) can be called

yt =
(
x(t− 1), . . . , x(t− k)

)
.

This is the most straightforward neural network forecasting scheme, in which
the neural network is trained to predict demand at a given time-step t based on
the demand during each of the previous k time-steps. Here, k is referred to as
the embedding dimension.

Uniform Sampling: Undersampling

Suppose demand follows yearly periodicity, meaning that the demand in previ-
ous years at a given date significantly correlates with demand in the current year
on that date. It would be wise to choose an embedding dimension k such that
the previous k time-steps stretch back more than one year; suppose r time-steps
stretch back exactly one year. In a uniformly-sampled input scheme, increasing
k to r increases the input dimension by the same amount, which adds nodes
and delays convergence of backpropogation.

Instead of simply setting k = r, suppose we sampled every other time-step,
so that

yt =
(
x(t− 2), x(t− 4), . . . , x(t− (r − 2)), x(t− r)

)︸ ︷︷ ︸
r
2 components

.

To limit the input to exactly k components, sampling could be distributed
arbitrarily scarcely, yielding

yt =
(
x(t− r

k
), x(t− 2r

k
), . . . ,

x(t− r)︷ ︸︸ ︷
x(t− kr

k
)
)

︸ ︷︷ ︸
k components

.

Note that k is no longer the “embedding dimension,” but is rather the length
of the “delay line,” an arbitrary sequence of time-steps at which demand is
being used as the input to a neural net whose output approximates subsequent
demand.

Non-Uniform Sampling: Delay Line

Let (dn)∞n=1 consist of strictly increasing integers. Then suppose the k-dimensional
input for which a NN would approximate demand at time t were

yt =
(
x(t− d1), x(t− d2), . . . , x(t− dk)

)
.

3

For example, suppose (d1, d2, d3, . . .) = (1, 2, 3, . . .), i.e. di = i. Then sam-
pling with delay line dn restricted to k components would be uniformly sampling
most-recent samples, with an embedding dimension of k.

If, instead, di = 2i, meaning (d1, d2, d3, . . .) = (2, 4, 6, . . .), then the input
would be under-sampled at every other time-step.

In fact, di = d(i) constitutes a valid delay line for any strictly increasing
function d : Z→ Z.

A non-linear increasing function d(i) will include sparser samples further
back in time, prioritizing more recent information in its predictions (e.g. d(i) =
ei or d(i) = i2).

3 General Demand Descriptors for NN Input

Change of Notation

Regardless of the preferred scheme for sampling demand x, the input with which
the NN approximates x(t), which is called, yt, will include some description of
previous demand

(
x(t− 1), x(t− 2), . . .

)
and so on, in each of its components.

In general, let the input yt consist of k components, whose i’th component is
called xi(t), so that

yt =
(
x1(t), . . . , xk(t)

)
.

• Sampling uniformly from the most recent samples yields

yt =
(
x(t− 1), x(t− 2), . . . , x(t− k)

)
,

so
xi(t) = x(t− i).

• Undersampling uniformly to consider a span stretching back r time-steps
yields

yt =
(
x(t− r

k
), x(t− 2r

k
), . . . ,

x(t− r)︷ ︸︸ ︷
x(t− kr

k
)
)
,

so

xi(t) = x(t− ir

k
).

• Sampling from a delay line dn yields

yt =
(
x(t− d1), x(t− d2), . . . , x(t− dk)

)
,

so
xi(t) = x(t− di).

4

Periodic Memory Terms

There seems to be a trade-off between the dimension k of the input yt and the
historical “window” considered in a given prediction. However, this sense of
trade-off is disrupted by the fact that each input can describe arbitrarily old
demand by undersampling, either uniformly or on a delay line.

An idea seemed to be that any periodicity in demand could be incorporated
into a prediction by including a time-step from the previous “period” in a delay-
line. This idea was discussed when r denoted the number of time-steps spanning
one year, and the oldest demand sample included as a component of yt was
x(t− r).

Instead, periodicity at a scale/period p can be measured by the inner product
(denoted 〈·, ·〉) of demand x(t) and the p-periodic function sin(2π

p t):〈
x(t), sin(

2π

p
t)

〉
=

∑
oldestp≤i≤t

x(i)sin(
2π

p
i).

Note that the values of i over which this summation is calculated determines
the window considered relevant for analysis of periodicity at a given scale. At
different scales, different spans of historical data may be relevant or irrelevant
for analyzing periodicity. Let the oldest time-step worth considering for periodic
trends at scale p be called oldestp.

For example, a shift in sales strategy 1.5 years ago may have yielded weekly
patterns that didn’t previously exist (a shift from wholesale to retail inducing
higher demand on Fridays than Mondays, e.g.), even as monthly demand trend
has stayed somewhat constant over the company’s 10 year history (demand
is always high on the first of the month, e.g.). If pyear, pmonth, and pweek de-
note the number of time-steps corresponding to one year, one month, and one
week, respectively, then it may be wise to choose oldestpweek

= 1.5pyear, and
oldestpmonth

= 10pyear.
2

If each component of input yt described demand’s periodicity at a different
scale, then let the scale reflected in the i’th component be called pi, and

xi(t) =

〈
x(t), sin(

2π

pi
t)

〉
.

In other words, the NN will be trained to approximate demand at x(t) with
the k-dimensional input vector yt defined as:

yt =
(
x1(t), . . . , xk(t)

)
=
(〈

x(t), sin(
2π

p1
t)

〉
,

〈
x(t), sin(

2π

p2
t)

〉
, . . . ,

〈
x(t), sin(

2π

pk
t)

〉)
,

where each component xi(t) represents periodicity of demand at scale pi.

2The term oldestp will be incorporated into the general trend bases ci such that ci(t) =
0 ∀ t ≤ oldestpi

5

General Convolutional Memory Terms: Not Strictly Peri-
odic Trends

Convolution Definition

For two functions f and g, the convolution at time t, denoted f(t) ∗ g(t), is
defined as

f(t) ∗ g(t) =
∑
i

f(t)g(t− i).

Convolution is very similar to the inner product, with a few differences.
First, rather than implicitly starting summation at the “beginning” of the func-
tions and ending at the “end” as in an inner product, convolution specifies the
point from which summation moves “outward”. Second, one of the functions
is reversed in the convolution (symmetry makes it arbitrary which function is
reversed); since the functions that will be convolved here are always a “signal”
and a “basis” function, and the directionality of the bases can be chosen, this
is not such a constraint; this happens to be convenient, given that analysis of a
given time-series trend naturally works backwards from the point of most recent
information.

As with inner product, the ideal “depth” of the convolution, meaning the
range of values away from t over which the summation is performed, may be
subject to the trend being considered.

It’s also worth noting that for any two function f and g, convolution is
commutative (and associative and distributive), and the order of terms may be
changed without notice in this document.

Change of Notation

The concept of an inner product is associated with the relationship between two
geometrical objects, which, in this case, would be the demand time-series and
the “trend” functions (like sinusoids). However, what we’re really measuring
is the correlation of demand with a trend function at a given time point (each
of which has its own span during which the trend is being examined; namely,
time-steps[oldest, t]). For this reason, it may be more convenient, when repre-
senting this particular data in terms of basis functions, to reference the data’s
convolution with those bases (rather than inner product).

For that reason, it’s more appropriate to represent the correlation of de-
mand x(t) with a trend as a convolution of the demand time-series data with a
trend function, which, in general, will be indexed as ci(t) (in the above example
regarding periodic functions, ci(t) = sin(2π

pi
t)).

For the i’th trend being analyzed in the data, then, define a trend function
ci(t), and let

xi(t) = ci(t) ∗ x(t) =
∑
τ

x(t− τ)ci(τ).

6

As with periodic trend descriptors, let

yt =
(
x1(t), . . . , xk(t)

)
=
(
c1(t) ∗ x(t), . . . , ck(t) ∗ x(t)

)
Examples of Convolutional Memory Terms

• Periodic trend functions (sinusoids) are generally symmetric, so convolu-
tion and inner product yield the same result, meaning periodic memory
terms can be determined as above by using

ci(t) = sin(
2π

pi
t).

Using this choice of memory function ci, we can write the i’th component
of yt, which is the i’th descriptor of demand xi(t), as

xi(t) = 〈x(t), ci(t)〉 = ci(t) ∗ x(t).

• To simulate a “delay line” (dn)∞n=1, let

ci(t) =

{
1 if t = di

0 otherwise
.

In this case, it can be checked that

xi(t) = ci(t) ∗ x(t)

=
∑
τ

x(t− τ)ci(τ)

= ci(di)x(t− di)
= x(t− di).

Thus, as previously described in this case, the input yt becomes

yt = (x(t− d1), . . . , x(t− dk)) .

• To quantify “Exponential Trace Memory,” we can use

ci(t) = (1− µi)µti

for some µi ∈ (−1, 1). In this case, a component xi(t) of the NN input yt
becomes a weighted sum of previous values of demand x

xi(t) =
∑
τ

x(t− τ)ci(τ)

=
∑
τ

x(t− τ)(1− µi)µτi .

7

The rate of decay µi determines how much relative importance is accorded
to more recent terms: a smaller µi means that recent samples of demand
contribute much more to xi(t) than older samples.

Each component xi(t) is a weighted moving average of the previous de-
mand values, and the components together in yt =

(
x1(t), . . . , xk(t)

)
each

represent total historical demand with different biases for recent data.

Note that convolution need not be performed at each time-step: the con-
volution of a basis function and demand at time t can be defined by the
recurrence relation

xi(t) = (1− µi)x(t) + µixi(t− i),

and thus each of the components of the vectors yt = (x1(t), . . . , xk(t)) can
be efficiently calculated recursively over time t using a dynamic program-
ming algorithm.

• Let

ci(t) =

{(
t
di

)
(1− µi)di+1µt−dii if t ≥ di

0 otherwise

where the delay di is the “center” of the exponentially decaying bias, and
µi represents the rate of decay. The type of memory being quantified by
this convolution can be called “Gamma Memory”.

This is a generalized exponential trace memory strategy, in which only
demand samples older than a given delay di are considered, and in which
a binomial coefficient gives preference to terms surrounding the center,
depending on how far displaced the center is from current data. That
is, bases of this form have a “center” and a “radius” in which demand is
considered; when the center is very old, the radius widens.

Note that if di = 0, then this family of bases becomes the “exponential
trace memory” family of bases. Also note that if µi = 0, then this becomes
the “tapped delay line” family of bases (if we allow 00 = 1).

FACT CHECK THIS EVENTUALLY The statistical assumptions
surrounding this model, and its relationship to the binomial distribution,
seem to be that “shit happens” (as it does, which is with a binomial
distribution of likelihood), and if we specify a scale (likely conceivable
as the expected value of time-between-occurrences), we can measure the
contribution to demand of shit happening at that scale. If impulses effect
the system, and their frequency is not periodic chronologically, but is
rather periodic in a “how many rolls until I get a 5” type of way, then
these memory terms will likely capture that behavior.

MORE PRECISELY This is the binomial distribution, which usually
is plotted and conceptualized with respect to the variable that here is

8

di. In particular ci(t) is, exactly (time (1 − µi) for some reason), the
probability that an event, with independent probability of happening µi
per sample, doesn’t happen exactly di times out of t total samples. With
respect to t, this function attains its maximum at t ≈ di

(1−µ) . That is, the

solution to

max
t
ci(t)

is

t ≈ di
(1− µ)

.

Convoluting against ci(t) thus measures demand events di
(1−µ) time-steps

ago, and the surrounding time-steps. It is a smoothing, delaying function.

The end-result is that, given the assumption that di things have happened,
and that their probability of happening in a given time-step is µi, this basis
function measures the demand on the time-steps when those things are
most likely to have started happening.

A note on Dimensionality

The basis functions mentioned for any representation strategy (called ci(t)),
when taken together, make up an infinite set {c1(t), c2(t), . . .}, or a “family” of
functions. For each strategy, the corresponding family is such that, when taken
together, there are “enough” functions that we can infer everything we need to
know about the actual demand x(t) just by observing its convolution with each
function. In particular, there are “enough” functions in each family that we can
infer everything about the actual demand x(t).

That is, given every convolution

(x1(t), x2(t), . . .) = (c1(t) ∗ x(t), c2(t) ∗ x(t), . . .),

we should be able to reconstruct the demand (x(1), x(2), . . .) exactly.
In fact, since each family of functions is infinite, and the historical demand

goes back arbitrarily but is in fact finite, we would hope to reconstruct demand
with only finitely many convolutions. In practice, a careful choice of basis
functions should allow a relatively accurate representation of demand with very
few convolutional terms.

The number of terms necessary to accurately reconstruct the data in the
best possible choice of basis has to do with the data’s innate dimensionality. An
assumption of forecasting is that the demand, which contains many historical
data points, actually has a much lower innate dimension. That is, relating
historical demand over n time-steps would take an n-dimensional vector. If that
data could be represented with k convolutional memory terms, from which we
can fairly accurately reconstruct it, then the innate dimension is approximately
k, which is useful if k << n.

9

If the historical data is very “smooth,” then it is easier to imagine data’s low
dimensionality, but even pathological-looking data may be low-dimensional, as
long as it follows consistent trends.

Note that a given basis’s ability to efficiently reconstruct a function (its abil-
ity to “compress” the data) is a good indicator of its descriptive usefulness as
input to a forecasting NN, even though the NN will not technically be recon-
structing the function.

The ideal basis need not all come from one straightforwardly-indexed fam-
ily, but may be a hybrid from many different families of functions. Perhaps
a function could be represented by many different families of functions, and
then an analytic algorithm (like SVD) or a numerical one (like K-SVD) could
select the bases from each family that most highly correlate with demand (in an
analytical sense, or a numerical sense such as under the constraint of a sparse
representation).

10

