
Enterprise Wide Optimization Using Mixed

Integer Linear Programming

Zach Siegel

March 31, 2017

Abstract

Supply chains whose decisions consist of inventory holding, produc-
tion, transportation, sales, and materials acquisitions can be modeled and
optimized for revenue using mixed integer linear programming (MILP).
A “moving-horizon” model optimizes the revenue over the time-steps in-
cluded within the horizon; possible and optimal decisions are limited by
the system’s state, which can be updated at each time-step, or horizon
“shift”. Many decisions are integer-constrained or binary, greatly increas-
ing the computational cost of optimization, but the cost in the model
presented is “minimal” in the sense that only valid decisions are allowed.
Appropriate cutting planes can vastly decrease the cost of making binary-
constrained decisions, even in high dimensional systems, and paralleliza-
tion can divide the computational time-cost by the number of available
processors. Model extensions related to specific types of supply chains are
discussed.

1 Introdution

A supply chain whose decisions consist of inventory holding, production,
transportation, sales, and the acquisition of raw materials at various price
tiers can be optimized for profit using the following model. The number
of decision variables scales approximately proportional to the product of
the number of locations, the number of products, and the number of time-
steps modeled.

Depending on the system being modeled, the number of price tiers
available for acquisitions may be a coefficient to the total number of de-
cision variables. The number of decisions that can be carried out at each
location greatly influences the number of decision variables as well. If all
or most locations can buy, sell, produce, hold, and ship almost all possible
goods, the number of decisions will be several orders of magnitude greater
than if most locations can only carry out one or two of those activities.

The model below includes an objective function linear in each decision
variable, and each constraint is linear in each decision variable, making
this model solvable by any mixed integer linear programming (MILP)
algorithm.

1

The number of decision variables constrained to the integers is propor-
tional to the total number of decision variables. Most integer-constrained
decisions, however, are constrained to binary variables, which greatly lim-
its the computational cost to explore the solution space. The computation
is still expensive using a branch-and-bound linear programming algorithm,
but the number of nodes that need to be explored is far less than in a
general MILP due to the binary nature of the decisions. Branch-and-
bound is highly parallelizable, meaning that the total time to compute
can be divided by the number of processors available for computation, to
a nearly arbitrary extent, as long as each processor is able to compute a
(non-integer-constrained) linear program with a large number of variables.
The optimal parallelization scheme probably would store the constraint
matrix in a database that can be accessed by several nodes simultane-
ously, but each node would also need its own significant memory capacity
to solve its linear programming sub-problem.

If all the following constraints are met, and the given objective func-
tion is optimized, then the system-wide revenue will be maximized, and
the decision variables’ values will correspond intuitively to their stated
meanings.

This model amounts to a “moving horizon optimization” problem. In
practice, an implementation will have to be parameterized one time to
correspond to a given system, and then can be updated with the new sys-
tem state at each time-step. If the optimization is truly driving the real
system, then most changes made to the system at each time-step will sim-
ply correspond to the decisions made at the previous calculated time-step.
Thus, an expeditious implementation of the below model will assume that
previous decisions have been carried out, and will only required manual
updating of the system-state when a decision fails to be carried out. That
would mean that late arrivals of orders, incorrect shipments, and other
inconsistencies will require manual system-state updating, but otherwise
updating can be automatic. If decisions are consistently carried out dif-
ferently from the model’s planning, then the parameters of the system
should be adjusted to reflect reality.

Uncertainty can be accommodated as discussed, but is not explicitly
planned for in this model. To account for uncertainty, the same general
treatment of system modeling can be used, but the objective function
would need to reflect something different from deterministic revenue. The
most obvious way to account for uncertainty in the given implementation
is to optimize the model with slightly different parameters related to un-
certain system characteristics, such as demand, production time, delivery
time, and even costs. After running the optimization many times, the
decisions that are optimal or near-optimal across a range of parameters
could be considered “robust” to uncertainty.

Most MILP solvers can record any non-optimal, near-optimal, or gen-
eral feasible solutions encountered during optimization. By recording
near-optimal solutions, the robustness of certain decisions can be ana-
lyzed as discussed in the previous paragraph.

Decisions can be manually constrained to desired values or vetoed by
a user, to accommodate needs that fall outside of revenue optimization.
In the end, all decisions are made by the user, and an implementation and

2

user interface tailored to actual usage will be most appropriate.

2 Variables

2.1 System Scale Constants

Constant Meaning Example Entry = value Example Meaning

nz Number of products in system nz = 5; 5 products and components in sys-
tem

nt Number of time-steps in system nt = 4; 4 time-steps in system

nloc Number of locations in system nloc= 6; 6 locations (factories, warehouses,
retailers) in system

n0
t Number of initialized time-

steps
nt0 = 2; The first two time-steps are defined

as initial conditions (decision vari-
ables hard-bound)

ntiers Maximum number of price-tiers
for a raw material

ntiers = 3; Some raw materials have 3 pricing
tiers for acquisition

dimTotal Total number of decision vari-
ables

dimTotal = (4+nloc)*nz*nloc*nt

+ (nloc^2)*nt + nt*nloc;

See: Decision Variables

dimInt Total number of INTEGER-
VALUED decision variables

dimInt = nz*nloc*nt +

(nloc^2)*nt + nt*nloc;

See: Decision Variables

3

2.2 Parameters
Parameter Number Pa-

rameters
Element = Explanation

Demand nz ∗ nt ∗ nloc demi,j,k = cwi,j,k = dem(i,j,k)

=

demand for product i at time-step j at location k

B.O.M. nz ∗ nz Bi,I = Bom(i,I) = Number of units of item I DIRECTLY required to produce
1 unit item i

Time to Produce nz ∗ nloc Rzi,k = R_z(i,k) = Number of time-steps in production cycle for product i at
location k

Time to Transport n2
loc Rtk,L = R_t(k,L) = Number of time-steps to send a truck from location k to

location L

Product Space Re-
quirements

nz si = s_y(i) = Number of “units” (of space, load, etc.) required to hold or
truck one unit of product i

Capacity to Hold nloc cyk = c_y(k) = Capacity (in “units”) to hold at location k

Capacity to Truck 1 ctruck = c_truck = Capacity of one truck (in “units”)

Capacity to Pro-
duce

nz ∗ nloc czi,k =c_z(i,k) = Capacity to produce product i at location k (in “num-
ber/amount produced”)

Minimum Order
Size

nz ∗ ntiers cwmi =c_w(m,i) = Minimum order size to purchase SKU i at price tier m.

Cost at Sale nz ∗ nt ∗ nloc fwsi,j,k = f_ws(i,j,k) = Revenue gained from a sale of one unit of product i at time-
step j at location k.

Cost at Acquisition nz ∗ nt ∗ nloc ∗
ntiers

fwmi,j,k = f_w(i,j,k,m) = Cost to acquire SKU i at time-step j at location k at price
tier m.

Cost to Produce
(per-unit)

nz ∗ nt ∗ nloc fzi,j,k = f_z(i,j,k) = Cost to produce one unit of product i at time-step j at
location k

Cost to Produce
(fixed)

nz ∗ nt ∗ nloc fz0i,j,k = f_z0(i,j,k) = Fixed cost of running a production cycle of product i at
time-step j at location k

Cost to Hold nt ∗ nloc fyj,k = f_y(j,k) = Cost to hold one unit (in “units”) at time-step j at location
k

Cost to Truck by
Route

n2
loc f tk,L = f_t(k,L) = Cost to send one truck from location k to location L (can

easily make time-variable)

Characterization of
Location for Sales

nz ∗ nloc cw0
i,k = wc(i,k) =

1 Product i can be sold at location k
−1 Product i can be bought at location k
0 otherwise

Characterization of
Location for Pro-
duction

nz ∗ nloc cz0i,k = zc(i,k) =

{
1 Product i can be produced at location k
0 otherwise

Characterization of
Route

n2
loc ct0k,L =tc(k,L) =

 1
Trucks can/do travel

from location k to location L
0 otherwise

Initial Conditions nz ∗n0
t ∗nloc+

...
init(n,i,j,k,L) = Defined for time-steps j ≤ n0

t , n is the decision index,
and i, j, k, and L may or may not all be used to index to
product/time/location/location whose initial conditions are
hard-set

4

2.3 Decision Variables
Variable Indexed in decision

vector =
Meaning Max Num-

ber of Vari-
ables

Lower
Bound

Upper
Bound

yi,j,k x(J(1,i,j,k,1)) = inventory of product i at location k at time-step j nz ∗ nt ∗ nloc 0 cyk,∞*

zi,j,k x(J(2,i,j,k,1)) = amount produced of product i at location k at time-
step j

nz ∗ nt ∗ nloc 0 czi,k,∞*

ti,j,k,l x(J(3,i,j,k,L)) = amount of product i transferred from location k to
location l at time-step j

nz ∗ nt ∗ n2
loc 0 ∞

wsi,j,k x(J(4,i,j,k,1)) = amount of product i SOLD at location k at time-step
j

nz ∗ nt ∗ nloc −∞, 0** 0,∞**

z0
i,j,k x(J(5,i,j,k,1)) =

 1
Machine at location k

goes into production for
product i at time-step j

0 otherwise

nz ∗ nt ∗ nloc 0 1

t0j,k,l x(J(6,1,j,k,L)) = (INTEGER ≥ 0) Number of trucks sent from location
k to location l at time-step j

nt ∗ n2
loc 0 ∞

z00
j,k x(J(7,1,j,k,1)) =

 1
Machine at location k is

“in-production” at time-step j
0 otherwise

nt ∗ nloc 0 1

wmi,j,k x(J(8,i,j,k,m)) = amount of product i BOUGHT at location k at time-
step j at price-tier m

nz ∗ nt ∗ nloc ∗
ntiers

0 ∞

wm0
i,j,k x(J(9,i,j,k,m)) =

 1
Product i is purchased at tier
m at time-step j at location k

0 otherwise
nz ∗ nt ∗ nloc ∗
ntiers

0 1

*Note that where two bounds are given, the more restrictive bound
may be included to accelerate optimization, but the theoretical optimiza-
tion problem will be satisfied given the less restrictive constraint. This is
usually because one of the constraints will limit the given variable under
any circumstances.

**Note that decision variables corresponding to the sale of product at
a given location are non-negative and unbounded above, whereas decision
variables corresponding to the purchase of product/component at a given
location are non-positive and unbounded below.

3 Formal Optimization Problem

If the following function is maximized given all the listed constraints, then
all the decision variables will correspond to possible decisions at each time-
step. Objective:

Maximize
∑
i,j,k

fwsi wsi,j,k−
∑
i,j,k,m

fwmi wmi,j,k−
∑
j,l,k

f tl,kt
0
j,l,k−

∑
i,j,k

fzi,kzi,j,k−
∑
i,j,k

fz0i,kz
0
i,j,k−

∑
i,j,k

fyk siyi,j,k

(10)
SUBJECT TO:
Evolution:

yi,j,k = yi,(j−1),k+zi,(j−Rz
i,k

),k−
∑
I

zI,(j−1),kBI,i+
∑
l

ti,(j−Rt
l,k

),l,k−
∑
l

ti,(j−1),k,l−wsi,(j−1),k+
∑
m

wmi,(j−1),k

(1)

5

∀i ∈ [1, nz], j ∈ [2, nt], k ∈ [1, nloc]

Final Time-Step Evolution:

wsi,nt,k+
∑
I

zI,nt,kBI,i+
∑
l

ti,nt,k,l ≤ yi,nt,k ∀ i ∈ [1, nz], k ∈ [1, nloc] (2)

Inventory Holding:∑
i

siyi,j,k ≤ cyk ∀ j ∈ [1, nt], k ∈ [1, nloc] (3)

Transportation:∑
i

siti,j,k,l ≤ ctruckt0j,k,l ∀ j ∈ [1, nt], k ∈ [1, nloc], l ∈ [1, nloc] (4)

Sales:

wsi,j,k ≤ demi,j,k ∀ i ∈ [1, nz], j ∈ [1, nt], k ∈ [1, nloc] (5)

Acquisitions:

cwmi wm0
i,j,k ≤ wmi,j,k ≤ ∞wm0

i,j,k ∀ i ∈ [1, nz], j ∈ [1, nt], k ∈ [1, nloc],m ∈ [1, ntiers]
(6)

Production Capacity:

zi,j,k ≤ czi,kz0
i,j,k ∀ i ∈ [1, nz], j ∈ [1, nt], k ∈ [1, nloc] (7)

Production Site Occupation:

z00
j,k +

∑
i

z0
i,j,k ≤ 1 ∀ j ∈ [1, nt], k ∈ [1, nloc] (8)

Production Site PRE-Occupation:

z00
j,k︸︷︷︸

0 or 1

≥
nz∑
i=1

Rz(i,k)−1∑
τ=1

z0
i,j−τ,k︸ ︷︷ ︸
0 or 1

∀ j ∈ [1, nt], k ∈ [1, nloc] (9)

3.1 Evolution Equation: nz ∗nt ∗nloc equality con-
straints

yi,j,k = yi,(j−1),k+zi,(j−Rz
i,k

),k−
∑
I

zI,(j−1),kBI,i+
∑
l

ti,(j−Rt
l,k

),l,k−
∑
l

ti,(j−1),k,l−wsi,(j−1),k+
∑
m

wmi,(j−1),k

(1)
∀i ∈ [1, nz], j ∈ [2, nt], k ∈ [1, nloc]

Explanation:

yi,j,k︸ ︷︷ ︸
A

= yi,(j−1),k︸ ︷︷ ︸
B

+ zi,(j−Rz
i,k

),k︸ ︷︷ ︸
C

−
∑
I

zI,(j−1),kBI,i︸ ︷︷ ︸
D

+
∑
l

ti,(j−Rt
l,k

),l,k︸ ︷︷ ︸
E

−
∑
l

ti,(j−1),k,l︸ ︷︷ ︸
F

−wsi,(j−1),k︸ ︷︷ ︸
G

+
∑
m

wmi,(j−1),k︸ ︷︷ ︸
H

∀i ∈ [1, nz], j ∈ [2, nt], k ∈ [1, nloc]︸ ︷︷ ︸
nz ∗ nt ∗ nloc possible indices

6

Equation
Label

Term Explanation

A yi,j,k Inventory of product i at time-step j at location k

B yi,(j−1),k Inventory of product i held over from time-step (j − 1) at location k

C zi,(j−Rz
i,k

),k Rzi,k is the number of time-steps required to produce product i at loca-
tion k. Therefore, zi,(j−Rz

i,k
),k denotes the quantity of product i that is

coming out of production at time-step j

D zI,(j−1),kBI,i BI,i is the number of units of product/component i required to produce
one unit of product I, and zI,(j−1),k denotes the number of units of
product I produced in the (j− 1)’th time-step. Therefore, zI,(j−1),kBI,i
denotes how many units of product/component i went into produc-
tion for product I at time-step (j − 1).

E ti,(j−Rt
l,k

),l,k Rtl,k is the number of time-steps required to transport a truck from
location l to location k. Therefore, ti,(j−Rt

l,k
),l,k denotes the number of

units transported to location k from location l that arrive at time-step
j.

F ti,(j−1),k,l The quantity of product i transported from location k to location l
in time-step (j − 1)

G wsi,(j−1),k The quantity of product i sold at location k during time-step (j − 1).

H wMi,(j−1),k The quantity of product i acquired at location k during time-step (j−1)
at price tier m.

3.2 Final-Timestep Evolution: nz∗nloc constraints

wi,nt,k+
∑
I

zI,nt,kBI,i+
∑
l

ti,nt,k,l ≤ yi,nt,k ∀ i ∈ [1, nz], k ∈ [1, nloc] (2)

Explanation:

wi,nt,k+
∑
I

zI,nt,kBI,i︸ ︷︷ ︸
Amount of product i used for pro-

duction at location k in time-step

nt

+
∑
l

ti,nt,k,l︸ ︷︷ ︸
Amount of product i shipped from

location k in time-step nt

≤ yi,nt,k ∀ i ∈ [1, nz], k ∈ [1, nloc]︸ ︷︷ ︸
nz ∗ nloc possible in-

dices

The evolution equation ensures that all goods present at a given lo-
cation in a given time-step are either sold, transported away, used for
production, or held for the next time-step. That equation also allows
for goods to be added to the location through the corresponding deci-
sions. Another way to consider the evolution equation, however, is that
the decisions in a given time-step determine the held-over inventory for
the next time-step. For this reason, the evolution equation cannot govern
the final time-step included in the model. In the final time-step, the de-
cisions cannot be constrained to result in the held-over inventory of the
next time-step, but rather than leave them un-constrained, they must be
constrained to involve only available inventory. Un-constrained, the fi-
nal time-step’s decisions to sell would be maximized to demand, possibly
beyond the inventory available at that time-step.

7

3.3 Holding: nt ∗ nloc constraints∑
i

siyi,j,k ≤ cyk ∀ j ∈ [1, nt], k ∈ [1, nloc] (3)

Explanation:

Total space taken up

by inventory at time-

step j at location k︷ ︸︸ ︷∑
i

si︸︷︷︸
Space taken up

by product i

yi,j,k︸ ︷︷ ︸
quantity of

product i held

at time-step j

at location k

≤ cyk︸︷︷︸
Capacity to

hold inventory

at location k

∀ j ∈ [1, nt], k ∈ [1, nloc]︸ ︷︷ ︸
nt ∗ nloc possible indices

This constraint ensures that the quantity of inventory held at a given
location at a given time-step does not not exceed that location’s capacity
to hold inventory. Note that the “space taken up by product i” si is
measured in “units”, which can refer to volume, load, etc. If several
different types of capacities to hold products need to be taken into account,
several capacity constraints can be included as sni , and an additional set
of equally many constraints would be required for each type of capacity.

3.4 Transportation: nt ∗ n2
loc constraints∑

i

siti,j,k,l ≤ ctruckt0j,k,l ∀ j ∈ [1, nt], k ∈ [1, nloc], l ∈ [1, nloc] (4)

Explanation:

Total quantity of in-

ventory shipped from

location k to location l

at time-step j︷ ︸︸ ︷∑
i

si︸︷︷︸
Space taken up

by product i

ti,j,k,l︸ ︷︷ ︸
Quantity of

product i

shipped from

location k to

location l at

time-step j

≤ ctruck︸ ︷︷ ︸
Capacity of one

truck to hold in-

ventory

t0j,k,l︸︷︷︸
Number of

trucks sent

from location k

to location l at

time-step j

∀ j ∈ [1, nt], k ∈ [1, nloc], l ∈ [1, nloc]︸ ︷︷ ︸
nt ∗ n2

loc possible indices

Note that the number of trucks sent from location k to location l in
time-step j, t0j,k,l, is constrained to be a non-negative integer, meaning
that it is denoted an integer, and its lower and upper bounds are 0 and
∞, respectively.

8

3.5 Sales: nz ∗ nt ∗ nloc constraints

wsi,j,k ≤ demi,j,k ∀ i ∈ [1, nz], j ∈ [1, nt], k ∈ [1, nloc] (5)

Explanation:

wsi,j,k︸ ︷︷ ︸
quantity of

product i sold

at time-step j

at location k

≤ demi,j,k︸ ︷︷ ︸
Demand for

product i at

time-step j at

location k

∀ i ∈ [1, nz], j ∈ [1, nt], k ∈ [1, nloc]︸ ︷︷ ︸
nz ∗ nt ∗ nloc possible indices

3.6 Acquisitions: nz ∗ nt ∗ nloc ∗ ntiers constraints

cwmi wm0
i,j,k ≤ wmi,j,k ≤ ∞wm0

i,j,k ∀ i ∈ [1, nz], j ∈ [1, nt], k ∈ [1, nloc],m ∈ [1, ntiers]
(6)

Explanation:

cwmi wm0
i,j,k︸ ︷︷ ︸

=

 cwmi :
Product i purchased
at tier m at time-
step j at location k

0 : otherwise

≤ wmi,j,k ≤ ∞wm0
i,j,k︸ ︷︷ ︸

=

 ∞ :
Product i purchased
at tier m at time-
step j at location k

0 : otherwise

∀ i ∈ [1, nz], j ∈ [1, nt], k ∈ [1, nloc],m ∈ [1, ntiers]︸ ︷︷ ︸
nz ∗ nt ∗ nloc ∗ ntiers possible indices

Note that the binary decision variable wm0
i,j,k ∈ {0, 1} represents the

binary decision to either purchase SKU i at price tier m at time-step j at
location k or not.

If wm0
i,j,k = 0, then this equation states that

0 ≤ wmi,j,k ≤ 0,

or simply
wmi,j,k = 0,

meaning that none of SKU i is purchase at time-step j at location k at
price-tier m, as desired.

Alternatively, if wm0
i,j,k = 1, then this equation states that

cwmi ≤ wmi,j,k ≤ ∞,

which means that the minimum acquisition is cwmi , which is the minimum
order size for product i at price tier m, as desired. The maximum order
size is defined as infinity, because the upper bound of wmi,j,k already dic-
tates that orders cannot exceed the holding capacity of their destination.

Purchasing at the highest possible price tier will allow for equal acqui-
sition with the least penalty to the objective function. Thus, there is no
need to restrict that the maximum order size at a given tier be less than
or equal to the minimum order size for the subsequently higher tier. If
an order size were to exceed the minimum order size at a higher tier, the
decision variable wm0 corresponding to the higher tier would be nonzero
due to optimality.

9

3.7 Production Capacity: nz ∗ nt ∗ nloc constraints

zi,j,k ≤ czi,kz0
i,j,k ∀ i ∈ [1, nz], j ∈ [1, nt], k ∈ [1, nloc] (7)

Explanation:

zi,j,k︸ ︷︷ ︸
Quantity of product i

produce in time-step j

at location k

≤ czi,k︸︷︷︸
Capacity to produce

product i at location k

z0
i,j,k︸ ︷︷ ︸

=

 1 :
product i produced
in time-step j at lo-
cation k

0 : otherwise

∀ i ∈ [1, nz], j ∈ [1, nt], k ∈ [1, nloc]︸ ︷︷ ︸
nz ∗ nt ∗ nloc possible indices

This equation states that if z0
i,j,k = 1, then the quantity of product i

produced at time-step j at location k is less than or equal to czi,k, which
is the production capacity for product i at location k.

If, on the other hand, z0
i,j,k = 0, then the quantity of product i pro-

duced at time-step j at locationk is zero.
Note that z0

i,j,k ∈ {0, 1} ∀i, j, k, no matter what because those decision
variables are constrained to be integers, and their lower and upper bounds
are 0 and 1, respectively.

3.8 Production Site Occupation: nt∗nloc constraints

z00
j,k +

∑
i

z0
i,j,k ≤ 1 ∀ j ∈ [1, nt], k ∈ [1, nloc] (8)

Explanation:

z00
j,k︸︷︷︸

=

 1 :
location k is
“in-production”
at time-step j

0 : otherwise

+
∑
i

z0
i,j,k︸ ︷︷ ︸

=

 1 :

product i pro-
duced starting
in time-step j
at location k

0 : otherwise

≤ 1 ∀ j ∈ [1, nt], k ∈ [1, nloc]︸ ︷︷ ︸
nt ∗ nloc possible indices

This inequality ensures that the sum of all these binary decision vari-
ables is at most 1, meaning that at most one of these variables can
be equal to 1. That means that, for a given time-step j and location k,
there is one of three possibilities:

• No production starts, nor is any product “in production”. “No pro-
duction starts” means that for all products i, z0

i,j,k = zi,j,k = 0, and
“no product is in-production” means that z00

j,k = 0.

• Production “starts” on product i. This means that z0
i,j,k = 1, and,

in this case, this constraint ensures that no other products go into
production simultaneously. It also ensures that z00

j,k = 0, which
means that the factory is not “in-production” for anything, but has
just “started” production.

• Product i is “in-production”. In this case, z00
j,k = 1 is ensured by

equation (9), regardless of which product i. In this case, this con-
straint ensures that no other products go into production at this
time-step and location.

10

3.9 Production Site PRE-Occupation: nt∗nloc con-
straints

z00
j,k︸︷︷︸

0 or 1

≥
nz∑
i=1

Rz(i,k)−1∑
τ=1

z0
i,j−τ,k︸ ︷︷ ︸
0 or 1

∀ j ∈ [1, nt], k ∈ [1, nloc] (9)

which is equivalent to

z00
j,k︸︷︷︸

0 or 1

≥
nz∑
i=1

j−1∑
τ=j−Rz(i,k)+1

z0
i,τ,k︸ ︷︷ ︸

0 or 1

∀ j ∈ [1, nt], k ∈ [1, nloc]︸ ︷︷ ︸
nt ∗ nloc possible indices

.

This ensures

z00
j,k =

 1
Machine at location k is

“in-production” at time-step j
0 otherwise

given

z0
i,j,k =

 1
Machine at location k

goes into production for
product i at time-step j

0 otherwise

Rzi,k = Number of time-steps in production cycle for product i at location k (an integer ≥ 1)

This constraint demands that no product goes into produc-
tion while another product’s production cycle is ongoing.

Suppose that at a given location k, product I went into production
at time-step j − RzI,k. By definition, its production cycle extends from
time-step j −RzI,k to time-step j, with j being the final time-step during
the production cycle. We would like to say

z00
j−Rz

I,k
+1,k = 1

z00
j−Rz

I,k
+2,k = 1

...
...

z00
j−1,k = 1

z00
j,k = 1

Since these decision variables are bounded above by 1, it is sufficient to
show that z00

τ,k ≥ 1 for the appropriate indices τ .
Now let

t = j −RzI,k + 1,

which is one time-step AFTER product I went into production at location
k, and consider z00

t,k, which is the “in production” variable at the time-step
t. Using this change of variable, we want to prove

11

z00
t,k = 1

z00
t+1,k = 1

...
...

z00
j−1,k = 1

z00
j,k = 1

Product I went into production at time-step t− 1, so we know

z0
I,t−1,k = 1

and

z0
i,t−1,k = zi,t−1,k = 0 ∀ i 6= I

due to the production capacity constraint (7), and the production site
occupation constraint (8), respectively.

Since we know the production-time for product I at location k, Rz(I, k) ≥
1, and since all these decision variables are non-negative, we can confi-
dently say that

z00
t,k ≥

∑
i

t−1∑
τ=t−Rz(i,k)

z0
i,τ,k︸ ︷︷ ︸

0 or 1

≥
t−1∑

τ=t−Rz(I,k)

z0
I,τ,k︸ ︷︷ ︸

0 or 1

≥ z0
I,t−1,k︸ ︷︷ ︸

The final term in summation

= 1.

Now consider time-step t+ 1, and note

z00
t+1,k ≥

∑
i

t∑
τ=t−Rz(i,k)+1

z0
i,τ,k︸ ︷︷ ︸

0 or 1

≥
t∑

τ=t−Rz(I,k)+1

z0
I,τ,k︸ ︷︷ ︸

0 or 1

≥ z0
I,t−1,k︸ ︷︷ ︸

The second-to-last term in summation

= 1.

This logic holds until the first time-step at which z0
I,t−1,k is not in-

cluded in the given summation, which is the time-step t+RzI,k, at which

12

point we notice

z00
t+Rz

I,k
,k ≥

∑
i

t+RzI,k∑
τ=t−Rz(i,k)+Rz

I,k

z0
i,τ,k︸ ︷︷ ︸

0 or 1

=
∑
i

t+RzI,k∑
τ=t

z0
I,τ,k︸ ︷︷ ︸

Doesn’t include z0I,t−1,k

.

By examining the indices, we notice we’ve proved
z00
t,k = 1

z00
t+1,k = 1

...
...

z00
t+Rz

I,k
−1 = 1

and since t = j −RzI,k + 1, we’ve shown

z00
t,k = 1

z00
t+1,k = 1

...
...

z00
j,k = 1.

Note that it is useful to constrain equality here, because while there
is no cost to letting z00

j,k = 1 outside of a production cycle, and such a
decision can be easily disregarded, the correspondence of this model to the
system which it models would necessitate z00

j,k = 0 whenever production is
not happening at location k at time-step j. This constraint would become:

z00
j,k︸︷︷︸

0 or 1

=

nz∑
i=1

Rz(i,k)−1∑
τ=1

z0
i,j−τ,k︸ ︷︷ ︸
0 or 1

∀ j ∈ [1, nt], k ∈ [1, nloc].

3.10 Objective Function

Maximize
∑
i,j,k

fwsi wsi,j,k−
∑
i,j,k,m

fwmi wmi,j,k−
∑
j,l,k

f tl,kt
0
j,l,k−

∑
i,j,k

fzi,kzi,j,k−
∑
i,j,k

fz0i,kz
0
i,j,k−

∑
i,j,k

fyk siyi,j,k

(10)
Explanation:

Maximize

G︷ ︸︸ ︷∑
i,j,k

fwsi wsi,j,k︸ ︷︷ ︸
A

−
∑
j,l,k

f tl,kt
0
j,l,k︸ ︷︷ ︸

B

−
∑
i,j,k

fzi,kzi,j,k︸ ︷︷ ︸
C

−
∑
i,j,k

fz0i,kz
0
i,j,k︸ ︷︷ ︸

D

−
∑
i,j,k

fyk siyi,j,k︸ ︷︷ ︸
E

−
∑
i,j,k,m

fwmi wmi,j,k︸ ︷︷ ︸
F

13

Equation
Label

Term Explanation

A fwsi wsi,j,k The parameter fwsi denotes the sales price of one unit of product i. The
decision wsi,j,k denotes how much of product i is sold at time-step j at
location k. The product of these two terms is the amount of revenue
accrued by selling product i at time-step j at location k.

B f tl,kt
0
j,l,k The parameter f tl,k denotes the cost of sending a truck from location l to

k, and the decision variable t0j,l,k denotes the number of trucks sent on
that route at time-step j. The product of these two terms is the money
spent trucking along that route at time-step j.

C fzi,kzi,j,k The parameter fzi,k denotes the cost-per-unit of producing product i at
location k, and the decision variable zi,j,k denotes how much of product
i goes into production at time-step j at location k. The product of
these two terms is the variable cost expended on producing product i at
time-step j at location k.

D fz0i,kz
0
i,j,k The parameter fz0)i, k denotes the fixed-cost of a production cycle for

product i at location k. The binary (∈ {0, 1}) decision variable z0
i,j,k

denotes whether or not a production cycle for product i begins at time-
step j at location k. The product of these terms is either zero or fz0i,k,
and is equal to the fixed-cost of producing product i expended at time-
step j at location k. Note that fixed costs are considered to be accrued
instantaneously at the beginning of a production cycle (arbitrary re:
accounting).

E fyk siyi,j,k The parameter fyk denotes the cost per-time-step of holding one “unit” of
inventory at location k. The decision variable yi,j,k denotes how much of
product i is held at time-step j at location k. The product of these terms
is the cost expended for holding product i at time-step j at location k.

F fwmi wmi,j,k The parameter fwmi denotes the cost to purchase one unit of product i at
price tier m. The decision variable wmi,j,k denotes how much of product i
is purchased at time-step j at location k at price tier m. The product of
these terms is the cost expended for purchasing product i at time-step
j at location k at tier m.

G Equation This equation describes the “profit” over all the time-steps considered.
That is, for each time-step, the revenue minus the purchasing costs, mi-
nus the transportation costs, minus the variable/proportional production
costs, minus the fixed production costs, minus the holding costs is con-
sidered the profit, and the revenue over each time-step is added. This
may be more easily visualized given the presentation given in (11).

14

Maximize :

∑
j

Profit at time-step j︷ ︸︸ ︷

∑
i,k

fwi wi,j,k︸ ︷︷ ︸
Revenue/Sales

Costs at time-

step j

−
∑
l,k

f tl,kt
0
j,l,k︸ ︷︷ ︸

Transport costs

at time-step j

−
∑
i,k

fzi,kzi,j,k︸ ︷︷ ︸
Proportional

production

costs at time-

step j

−
∑
i,k

fz0i,kz
0
i,j,k︸ ︷︷ ︸

Fixed produc-

tion costs at

time-step j

−
∑
i,k

fyk siyi,j,k︸ ︷︷ ︸
Holding costs at

time-step j

(11)

4 Initial Conditions

The initial conditions can define the values of all the decision variables for
time-steps that have ALREADY passed, so that the optimization begins
“during” system operations.

Decisions for ANY time-step, though, can be hard-set. There are other
ways to ensure orders come through, such as by adding constraints that
ensure the sum of production quantities exceeds a given quantity by order
date, or by ensuring inventory exceeds the order amount, etc. There are
many ways to meet additional constraints. However, it’s worth noting
that, if external effort is put into determining some decisions, the corre-
sponding decision variables can easily be hard-set to the values determined
to be optimal.

5 Indexing Decision Variables (using the
matrix J)

All decision variables will be stored in a vector after MATLAB opti-
mizes. The index of the decision variables in this final vector may be
unclear, considering that the decision variables all span multiple indices,
and are most intuitively stored in 3- or 4-dimensional arrays. The most
straightforward way to find the optimal values in MATLAB’s output is
to create an “indexing matrix”, which I’ve called J .

The first dimension of J refers to the type of decision variable being
referenced. That is, all entries of the form J(1,i,j,k,L) are, by arbitrary
convention, the indices of holding decision variables of the form yi,j,k.
Since the indices of the holding variables run over 3 indices, the fifth
dimension of matrix J is unused, and, when the first component of the
index in J is 1, the fifth component must be 1 as well.

The indices of decision variables in the decision vector are described
in section 2.3.

15

6 Pruning Unused Variables

Not every location produces every product. Not every location sells or
buys every product. In fact, since a “location” can be a retailer, a ware-
house, or a production site, it’s quite likely that most product-location
pairs correspond to either sales, production, or neither. This can be de-
scribed in the system by constraining the decision variables corresponding
irrelevant decisions (production or sales of a given product at a given lo-
cation (at every time-step)) to be zero. However, decreasing the overall
number of decision variables is desirable given the problem’s computa-
tional complexity. Therefore, it is more useful to simply remove irrelevant
decision variables from the problem entirely.

This may produce an indexing headache in implementation, but it is
conceptually very simple: consider those variables as simply non-existent,
and whenever they are referenced in a summation over their corresponding
indices, consider nothing to be referenced.

Transportation variables (continuous and integer-valued) correspond-
ing to transportation routes that are un-travelled can also be “pruned”.

In this way, the dimension of the problem (number of decision vari-
ables) can be vastly reduced from dimTotal to what can be called dimFinal.

7 Extensions

Possible extensions of this technique, to include more functionality or
make more efficient the processing of current goals.

7.1 Stochasticity and Fully Time-Varying Param-
eters

Note that in the objective function (11), each decision variable’s coefficient
has a subscript j corresponding to the time-step in which the decision is
being made. That is, all the parameters associated with costs, revenues,
and actions in this model are time-varying. As a result, the effects of
changes in these system parameters can be investigated using this model.

Even time-varying parameters are not decisions made within this model.
On one hand, this means that a system parameter can be modeled as vary-
ing arbitrarily from time-step to time-step without adding computational
complexity to a solution, barring possible identification of symmetries
within the model by a sophisticated solver. On the other hand, this re-
quires separate analysis to choose time-varying parameters that are within
the user’s control, such as price.

All parameters may follow a deterministic or stochastic relationship,
and can be adjusted according to a separate model, such as a price-demand
curve. Time-varying parameters are no different, and so this supply-chain
model can accommodate arbitrarily complex time-varying relationships
between parameters, limited only by the granularity of the time-steps.

Uncertainty and stochasticity are not included in this model as such,
and parameters are modeled as “hard-set” and “known”, whether time-
varying or static. If parameters vary stochastically, a user can sample

16

parameters throughout their domains and generate optimal solutions for
each. This standard technique for stochastic optimization can describe
the stability of solutions, find regions of bifurcation in parameter space,
and give a user a more descriptive idea of what to do next. Time-varying
parameters give many more degrees of freedom in modeling stochasticity,
but the idea is the same.

7.2 Backlog in Demand

If demand in a given time-step is not met, does the demand for the product
in a subsequent next time-step understate the total consumer need/desire
for that good? Does demand “roll over” to the next time-step?

Suppose demand did not roll over. Then, un-met demand would rep-
resent a loss in revenue, and optimization would meet as much of that
demand as possible in every time-step. Unfortunately, if an optimal pro-
duction schedule failed to meet demand at a given time-step, no further
action would be taken by the optimization scheduler to increase supply
at subsequent time-steps.

While meeting demand at specified time-steps is important, so is ad-
justing to production limitations.

The current demand-fulfilling constraint in this model enforces that the
amount of a given product sold at a given time-step (at a given location)
is less than or equal to the demand at that time-step (at that location):

wi,j,k ≤ cwi,j,k︸ ︷︷ ︸
demi,j,k

∀ i ∈ [1, nz], j ∈ [1, nt], k ∈ [1, nloc]. (12)

To allow the system to fulfill all backlogged demand at full price, we can
allow the more lenient constraint∑

τ≤j

wi,τ,k ≤
∑
τ≤j

cwi,τ,k︸ ︷︷ ︸
demi,τ,k

∀ i ∈ [1, nz], j ∈ [1, nt], k ∈ [1, nloc]. (13)

It is likely, however, that while backlogged demand does imply potential
for sales, not all backlogged demand is sale-able. To extend this limita-
tion to account for a diminishing return on backlogged demand, define a
sequence

(an)∞n=1

such that
lim
n→∞

an = 0

and
1 ≥ a1 > a2 > . . . ≥ 0

Then, replace the constraint in (13) with

j∑
τ=1

a(j−τ+1)wi,τ,k ≤
j∑

τ=1

a(j−τ+1)c
w
i,τ,k ∀ i ∈ [1, nz], j ∈ [1, nt], k ∈ [1, nloc].

(14)
Note that over the summation in (14), the index of an runs from j

to 1, with the most recent demand term cwi,j,k having coefficient a1, the

17

greatest coefficient of any demand term. In this way, backlog in demand
is seen to “decay”, and maximum demand is met. That is, it is always
still possible for wi,j,k = cwi,j,k for all i, j, and k, but if a future time-step
is to fill some backlogged demand, it can only fill the fraction aτ of it,
where aτ < 1 in general.

A convenient choice of an would be an = (µwi,k)n−1, where µwi,k ∈
[0, 1] is a “decay constant” for demand backlog of a product at a given
location. Modelling fully non-decaying demand backlog then amounts to
letting µwi,k = 1, which allows demand to be filled “at any time-step”
after the demand presents itself (and an = 1 ∀ n). A “fully decaying”,
backlog-discarding model is described by letting µwi,k = 0, which allows
only demand at the current time-step to be filled (and a1 = 1, an =
0 ∀ n 6= 1, assuming the convention 00 = 1).

The resulting backlogged demand constraint can be expressed as a
convolution of the decay sequence an as in (15).

(an)jn=1∗(wi, n, k)jn=1 ≤ (an)jn=1∗(c
w
i,n,k)jn=1 ∀ i ∈ [1, nz], j ∈ [1, nt], k ∈ [1, nloc].

(15)
Consider demand backlog being a function of time as well as loca-

tion and sku. Alternatively, consider demand backlog to be a function of
forecasted demand for a sku at a location and time-step. Perhaps (

Note again that there is still only one demand-sales constraint per
product, time-step, and location (and fewer still after pruning). This de-
mand backlog adjustment does not increase the number of constraints of
the problem or, presumably, the complexity of finding the solution. This
does reduce the sparsity of the final constraint matrix, but it isn’t clear
that adding non-zero entries to that matrix makes the problem more com-
putationally intensive, althought it does, in general, increase the memory
required to store the (sparse) constraint matrix. If sparsity in the con-
straint matrix is seen to in fact yield computational advantages, this note
will be amended.

7.3 Deteriorating/Decaying Inventory

Given variables representing inventory at each time-step, any decay (or
growth) function corresponding to the reality of the system can be im-
plemented at no computational cost. This can be accomplished by multi-
plying the coefficient of the expression for yi,j,k in the evolution equation
(1) by the constant µyi,j,k < 1, which can be called the decay constant of
product i at location k at time-step j. If all products decay at the same
rate, the decay constant can be simply µy. However, for example, peaches
decay in Georgia in June (within a day) faster than apples decay in Mas-
sachussets in November (in a cellar, over the course of months). Thus, a
parameter matrix can be more appropriate than a single real number, at
no computational cost.

If this model were used to optimize a small system, such as a com-
mercial kitchen, in which each “location” might be an employee at their
station, then the deteriorating good extension might be very valuable. In

18

such a system, transportation would likely occur between a walk-in refrig-
erator and a prep table, limited by the “truck size” of what can be carried
in a person’s arms, with time-steps of just a few minutes. In this case,
different deterioration rates might lead to the decision to bring a tray of
spinach back to the cooler immediately, rather than leaving it on the ta-
ble, whereas the mushrooms can be left on the table and carried back to
the cooler in the same armful as the fish sauce, after prepping both sliced
mushrooms and their eventual sauce. Note that in a situation such as this,
the number of total “trucks” in any one time-step would be limited to the
number of available “factories” (employees), and a constraint would need
to be added: ∑

j,k,L

t0k,L +
∑
i,k

z0
i,j,k +

∑
k

z00
j,k ≤ nemployees (16)

Modelling decay consists of replacing the evolution equation (1) with

yi,j,k = µyi,j,k

(
yi,(j−1),k + zi,(j−Rz

i,k
),k −

∑
I

zI,(j−1),kBI,i +
∑
l

ti,(j−Rt
l,k

),l,k −
∑
l

ti,(j−1),k,l − wi,(j−1),k

)
.

(17)
For more information about decaying inventory, but nothing about

mixed-integer linear programs, see: http://www.m-hikari.com/ams/ams-2010/
ams-69-72-2010/mishravkAMS69-72-2010.pdf

7.4 Expiring Inventory

While decaying inventory has been explored previously in the field of sup-
ply chain management, hard-window “expiration” or “expiry” has not
been incorporated into the models described in academic literature (as
far as I can tell). To enforce hard-set expiry of goods within the cur-
rent model, only a small computational cost is incurred. The necessary
constraints will actually limit the solution space and thus may acceler-
ate convergence of an algorithm. Newly-defined decision variables can
be included to account for expiry, but, perhaps more easily, the existing
framework can be extended to describe product expiry.

For each component i, define time of expiry to be Ryi . Then, define
a location kwaste and let the cost to transport to kwaste, f

t
(k,kwaste) =

0 ∀ k ∈ [1, nloc]. Here, nloc continues to describe the number of locations
not including kwaste for convenience of documentation. Documentation
will be updated when this model extension is incorporated into the model’s
computation. Allowing for shipment to kwaste as to other locations at
each time-step allows for shipment of goods to kwaste at zero cost to the
system (except, of course, opportunity cost - which will be minimized!).
The locational parameters describing kwaste should include cykwaste =∞,

fyj,kwaste = 0 ∀ j ∈ [1, nt], and Rtk,kwaste = 1, meaning that infinite
product can be held indefinitely at no charge at kwaste, and waste arrives
there as soon as possible after it is shipped. Finally, and crucially, it must
be enforced that ct0kwaste,k = 0 ∀ k ∈ [1, nloc] and that ct0k,kwaste = 1 ∀ k ∈
[1, nloc], meaning every location can produce waste by shipping to kwaste,
but no locations can “reclaim” waste of any kind.

19

http://www.m-hikari.com/ams/ams-2010/ams-69-72-2010/mishravkAMS69-72-2010.pdf
http://www.m-hikari.com/ams/ams-2010/ams-69-72-2010/mishravkAMS69-72-2010.pdf

The following constraint will ensure that the appropriate quantity of
expired goods is in fact shipped to kwaste at time of expiry. SCRAP
ALL PREVIOUS NOTES. (Make sure it isn’t possible to put goods on a
truck so that their expiry passes un-noticed while en-route. Account for
this!) NEW NOTE: To account for inventory expiry, consider incorporat-
ing inventory variables ymi,j,k where m indicates the number of time-steps
that have passed since beginning of lifespan of said good. The evolu-
tion equation then decouples into several equations, where production or
purchasing adds to a given “shelf-age” inventory level, while holdover of
inventory at a given age adds to the subsequent inventory age. The total
number of decision variables (for all possible decisions) corresponding to
a given product i would then be multiplied by approximately Ryi , increas-
ing the problem complexity by several times. Assuming the shelf-life for a
good is either very short (just a few time-steps) or very long (many, many
time-steps for commodities or fully shelf-stable goods), it may be wise
to omit long shelf lives by compressing differently shelf-aged inventories
into a single inventory, while short-lived goods would be represented by
Ryi multiples of the original model’s decision variables, but Ryi would be
small, as stated.

7.5 Accounting for Equity

The current problem formulation optimizes for the profit earned by the
final time-step, referred to as nt. Profit is defined by the objective function
(10) to be:

Profit = +Sales Revenue
−Transportation Costs
−Production Costs
−Holding Costs

It would not add any computational complexity to expand the objec-
tive function to include the value of inventory that is “held”, “in-transit,”
and “in-production” at the final modeled time-step. The objective func-
tion would then be:

Profit = +Sales Revenue
−Transportation Costs
−Production Costs
−Holding Costs
+Value of Stored/In-Transit/In-Production Goods

Formally, recall that fwi,j,k denotes the sales price of product i at time-

step j at location k. Analogously, let f
wf
i,nt,k

denote the “value” of product
i at location k at the final time-step nt. Let valnt denote the final “value”
of all the unsold inventory produced in the system by the final time-step.
The value of valnt can be defined as

20

valnt =
∑
i,k

f
wf
i,nt,k

yi,nt,k+
∑
i,k

nt∑
j=nt−Rzi,k+1

f
wf
i,nt,k

zi,j,k+
∑
i,k,l

nt∑
j=nt−Rtl,k+1

f
wf
i,nt,k

ti,j,l,k.

(18)
This can be explained as:

valnt =
∑
i,k

f
wf
i,nt,k

yi,nt,k︸ ︷︷ ︸
unsold, held inventory

+
∑
i,k

nt∑
j=nt−Rzi,k+1

f
wf
i,nt,k

zi,j,k

︸ ︷︷ ︸
“in-production” inventory

+
∑
i,k,l

nt∑
j=nt−Rtl,k+1

f
wf
i,nt,k

ti,j,l,k

︸ ︷︷ ︸
“in-transit” inventory

.

Then let the objective function (10) become:

Maximize
∑
i,j,k

fwi wi,j,k−
∑
j,l,k

f tl,kt
0
j,l,k−

∑
i,j,k

fzi,kzi,j,k−
∑
i,j,k

fz0i,kz
0
i,j,k−

∑
i,j,k

fyk siyi,j,k+valnt

(19)
Valuing equity incentivizes an optimal solution to store value in inven-

tory that is “in-production” or “in-transit” at the final time-step. This
is an important fact of a supply chain, but will incentivize production
of a potentially huge quantity of product in the final time-steps. Con-
straints could be added so that the “end-time” production and shipping
at a given location do not exceed some aggregate demand forecast over the
next several time-steps at that location. If many time-steps are simulated,
then it would add a comparatively small computational burden to create
different “tiers” of end-time inventory variables, to represent non-linear
value. That is, perhaps end-time inventory is valuable, but is modeled
most realistically with a non-linear value. Then “end-time” production
and shipping orders (which will not be completed by nt can be enforced
to be represented by “bottom-tier” decision variables until their quantity
exceeds a threshold at which point they are represented by “top-tier” de-
cision variables, whose value is lower (a separate analogue of f

wf
i,nt,k

would
be introduced). The quantity of each tier can be limited to the available
storage capacity at each location and by forecasted demand.

7.6 Shipping Options

If several shipping options are available, decision variables correspond-
ing to those shipping modes, with possibly several shipping cost/distance

matrices Rt1k,L, . . . , R
tntrucking
k,L .

7.7 Capacity in “Units” vs. Size and Weight (and
potentially other quantifiers)

An object does not take up “x units” in a warehouse or on a truck. Rather,
a product has a weight and a volume, and they are relevant at different
times. Consider storing products’ weights and volumes. The volume
would affect storage as well as shipping requirements needed to transport

21

that good, whereas the weight might affect primarily the shipping re-
quirements. An extra set of “transportation capacity” constraints would
be required. Possibly the same number of “holding capacity” require-
ments would be needed (unless weight was in fact relevant). This would
not add to complexity of the MILP, and might in fact limit the number
of possible solutions.

7.8 Horizon Stabilization

Presumably, the model will produce un-realistic artifacts of horizon shift-
ing, mostly concerning decisions corresponding to late time-steps. Due to
the inability to fully accurately quantify the value of a held-over piece of
inventory at the end of a modeled timeframe, optimization may instruct
preparing unwise quantities of held-over inventory. Ideally, updates in
the system state each time the model is iterated to the next time-step
will mean that “next step” instructions are always well-founded, and in-
structions near the horizon will never be fully relevant. Ideally, however,
many instructions will be well founded, so that communication regarding
orders from producers and suppliers that are not incorporated into the
system can be made as early and accurately as possible. Of course orders
that have already been placed can be hard-constrained into the model
and incorporated into an optimal plan, but in order to ensure that the
artifacts close to the horizon do not compromise the legitimacy of instruc-
tions closer to the current time-step, the horizon should be placed as far
outward as possible - past the earliest desirable point at which any orders
would be need to be placed “ahead of time”.

Interestingly, given information regarding the demand function, such
as its periodicity (inner product with respect to Fourier bases), total
weight (e.g. the L1 norm throughout the product’s life-cycle corresponds
to “life-cycle sales benchmarks”), certain periodic or long-term optimal
system-wide behavior may be analytically determinable. In short, certain
types of long-term “planning ahead” would only be possible with a hori-
zon of a certain depth (such as pre-emptively producing a subcomponent
at full order size, at the largest production site); but at some “horizon
stabilizing” depth, presumably, all possible “planning-ahead” strategies
would be considered by this model. Ideally, this “horizon stabilizing”
depth should be the depth included in the model for optimization of the
system to fully manifest.

Can this depth be derived analytically from the demand functions and
parameters? Does it perhaps need to be determined by simulation? This
question warrants further exploration.

7.9 Linking Adjacent Supply Chains

The computational cost of expanding any dimension of a supply chain
is seen to be relatively high. Given new access to parallel processing,
advances in processor speed, and advances in integer linear programming,
such as cutting plane automation, this work may have recently become
feasible despite computational limitations. However, there will always

22

be a computational advantage to disaggregating sub-supply chains, and
optimization may still be possible.

One way to do this is to divide a supply chain into smaller supply
chains, possibly dictated by the individual hubs. Then, to purchase any
good from a separate supply chain, there will be an “acquisition lead time”
to purchase product i from location k at time-step j denoted Rwi,j,k. This
lead time will not be equivalent to the production lead times familiar to
SCM. Instead, Rwi,j,k will be defined by the number of time-steps neces-
sary to ship product i from the nearest facility in the wider supply chain
network that holds that product/component/subassembly/material.

To calculate Rwi,j,k during pre-processing, all supply chains involving
SKU i will be subjected to planning optimization (through the very model
in this paper) with the parameter cwi,j′,k′ (the demand for SKU i, which
may be zero by default if it is a sub-assembly) set to the proposed cross-
supply chain demand, or, alternatively, with an enforced minimum pro-
duction order or sales allocation/benchmark before a certain time-step.
The sub-supply chain whose lead time is lowest may dictate the value of
Rwi,j,k for inter-SC purchasing.

Iteratively optimizing over different supply chains to generate different
lead times (and even equity valuations) may disaggregate the computa-
tion sufficiently to allow for robust system-wide solution navigation. By
iteratively improving inter-SC decisions, a gradient-descent for the overall
supply chain is carried out. Depending on the efficiency of disaggregated
MILP computation, a database could be constantly updated governing
inter-SC commerce by keeping track of the minimum lead times for sub-
assemblies across optimization borders.

By dis-aggregating and optimizing over smaller systems, “benchmark
descriptors” can be defined and established meaningfully, such as the eq-
uity valuation mentioned in 7.5. These descriptors can govern inter-SC
commerce, which can be utilized optimally by purchasing subject to lead
times Rw, at cost governed by the equity descriptor. By optimizing sub-
ject to all hard-constrained orders for the various subassemblies that could
be utilized inter-SC, and maintaining a database of the resulting valua-
tions (determined by profit reduction in the system that produces the
SKU) and corresponding lead times, inter-SC commerce would be effort-
less. Furthermore, if each SC in a given “SC net” optimized at each
time step subject to inter-SC orders, system-wide optimization would be
achieved, or nearly achieved, as though the system had not been disag-
gregated at all.

Different inter-SC subassembly trade costs can be associated with dif-
ferent lead-times. In fact, this common platform will be a novel way to
consistently account for that most basic of facts: that different lead times
have different costs. There will be no guesswork in setting the prices for
different lead times, and there will be no need for competition to whittle
away surplus value on any end - all participating SCs will presumably
agree to share system-wide savings.

!!!

23

8 Symbol Guide

Hi Theo, here is a guide to some of the math symbols I use all the time.
Symbol Meaning Example Example Meaning

∈ “is in” or “is an element of” x ∈ [0, 1] Variable x is in the interval
from 0 to 1. Equivalent to
0 ≤ x ≤ 1.

[a, b] The interval including all
real numbers between a
and b (including a and b)

x ∈ [a, b] Variable x is in the interval
from a to b

{a, b, c, d} The set containing the
numbers/vectors/elements
a, b, c and d

x ∈ {a, b, c, d} Variable x is equal to a, b, c,
or d

b∑
x=a

f(x) The sum of the function
f(x) evaluated at all inte-
ger values of x between a
and b

4∑
x=1

x2 =
∑

x∈{1,2,3,4}

x2 12 + 22 + 32 + 42

2∑
i=1

5∑
x=1

xi (11 + 21 + 31 + 41) + (12 +
22 + 32 + 42)∑

i,x

xi =
∑
i

∑
x

xi If the only possible values
of x and i are obvious, this
notation suffices

∀ “for all” wi,j,k ≤ demi,j,k ∀ i, j, k Sales of product i at time-
step j at location k are less
than the demand for prod-
uct i at time-step j at loca-
tion k, and this goes FOR
ALL products i, time-steps
j, and locations k.

∀ i ∈ [1, nz], j ∈ [1, nt], k ∈ [1, nloc] For all i in the inter-
val [1, nz], ∀j in the inter-
val...Sometimes it is useful
to specify ALL the values
that a variable can take on.

∀ i 6= I For all values i NOT
EQUAL TO I. This is a
useful way to refer to all
indices EXCEPT a given
one.

24

	Introdution
	Variables
	System Scale Constants
	Parameters
	Decision Variables

	Formal Optimization Problem
	Evolution Equation: nz*nt*nloc equality constraints
	Final-Timestep Evolution: nz*nloc constraints
	Holding: nt*nloc constraints
	Transportation: nt*nloc2 constraints
	Sales: nz*nt*nloc constraints
	Acquisitions: nz*nt*nloc*ntiers constraints
	Production Capacity: nz*nt*nloc constraints
	Production Site Occupation: nt*nloc constraints
	Production Site PRE-Occupation: nt*nloc constraints
	Objective Function

	Initial Conditions
	Indexing Decision Variables (using the matrix J)
	Pruning Unused Variables
	Extensions
	Stochasticity and Fully Time-Varying Parameters
	Backlog in Demand
	Deteriorating/Decaying Inventory
	Expiring Inventory
	Accounting for Equity
	Shipping Options
	Capacity in ``Units" vs. Size and Weight (and potentially other quantifiers)
	Horizon Stabilization
	Linking Adjacent Supply Chains

	Symbol Guide

