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1 Introduction

1.1 Objective and Motivation

‘Drift’, or dispersal, in the context of aquatic entomology, is the process of an
individual detaching from the benthos to enter the water column and relocate
within a river stretch. Populations face the ‘drift paradox’, which is the question
of how upstream populations are able to persist when they are being drifted
downstream. The treatment of this paradox is a defining feature of models of
populations on a river stretch (Lutscher 2005). The potential of these models to
forecast population stability is desirable because aquatic insect populations are
indicators for the health of stream ecosystems. Identified causes of insect drift
are described in papers (Huryn, 2000; Allan, 1989; Gibbons, 2010; Breitenmoser-
Wursten, 1994), though little is known regarding how long and how far insects
drift. Progress has been made into the effects of dispersal on the persistence of
populations within mechanistically-derived models that have assumed drift to
be an‘advection-diffusion’ process, which is equivalent to diffusion by Brownian-
motion of chemicals within a unidirectional flow (Lutscher 2005, Ramirez 2011).
Necessary conditions for population persistence have been determined under
these assumptions; however, the gap between biological data and mathematical
models has limited their predictive ability.

A main focus of this paper is the use of quantitative and qualitative data,
both accepted in published literature and collected experimentally, to param-
eterize numerical simulations of existing models. The findings of this paper
consist of reconciliations of the outputs of mathematical models with an under-
standing of the physical and biological behavior of aquatic organisms in a river
stretch.

Data was collected from field experimentation to determine the dispersion
kernel for aquatic insects. Aspects of the model were computationally param-
eterized for a‘best-fit’ with the goal of comparing the fit to the collected data
(under the assumption of the‘advection-diffusion’ model). In turn, the accuracy



of the optimal parameterization could be examined by comparison to measur-
able quantities, such as average stream velocity. In these ways, the correlation
between relatively mature models and complex biological systems can be better
understood.

1.2 Prior Research

Though aquatic insect dispersal has been studied since the early 20th century,
little is known about the mechanisms involved in dispersal. In 1972, Thomas
Waters wrote a literature review summarizing the main research that had been
conducted to that point. One point that is most agreed on is the diel periodicity
of aquatic insect drift. The cause of this periodicity is unknown, although some
research speculates it is related to predation. Research has shown that the
presence of a predator may lead to reduced mobile activity, increased sheltering
behavior, and greater nocturnal activity (Huryn 2000). Other research has been
conducted to determine how factors such as body size, hunger (Allan 1989),
gravel size (Gibbons 2010), and insect life cycle (Breitenmoser-Wursten 1994)
relate to aquatic insect dispersal. In general, it is known that a starved animal
will disperse more frequently than one that is not (Allan 1989). In the same
research, it was also shown that a larger (more mature) insect will drift farther.
This is correlated to the insect life cycle and also gravel size. The younger the
insect, the greater its ability to attach to various sizes of sediment (Gibbons
2010). Insect life cycle is one of the largest contributing factors to drift because
an insect will drift only during the nymph phase of its life cycle. It is shown that
a nymph will drift due to the fact that it is looking for a place to emerge as an
adult (Waters 1972). All of these factors are important considerations to develop
an appropriate mathematical model, but not every factor can be included for the
sake of simplicity. This lack of accuracy is shown in the mathematical models
have been attempted to date. These models attempt to show dispersion through
partial integro-differential equations of advection-diffusion processes (Lutscher
2005, Ramirez 2011), but little has been done to test the parameterization of
these models in a true biological setting.

1.2.1 Defining Parameters from Prior Research

There are constants included in the mathematical model are extremely diffi-
cult to calculate in the field. Thus, literature values were identified for the
following environmental parameters: reproductive growth rate (the variable r),
aquatic insect life cycles, and time of day. The insects chosen for all numeri-
cal values derived from the literary research are of the genus Baetis. To find
r, the raw number of eggs deposited per female was used. This number was
approximately 200-3000 eggs/female (Encalada 2005). Because the number of
new adult insects per year per original insect was needed, the mortality at each
life stage was found. These numbers were approximately 10-20% mortality for
eggs, and 95% mortality for all other insects that do not reach the reproduc-
tion age (Huryn 2000). Insect drift is minimally affected by time of day, such
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as by diel periodicity, predation, hunger (Waters 1972), and stage in life cycle
(Breitenmoser-Wursten 1994).

1.3 Mathematical Model

The model used throughout this research is adopted from the model described
in Ramirez (2011). It considers a species in a one dimensional stream where an
individual may be in one of two states at any given time: drifting in the water,
or attached to the bottom. During periods of drift it is assumed that individuals
are transported by means of an advection diffusion process. This assumption
is consistent with previous experimental and analytical research (Fischer, 1973;
Lutscher, 2005; Ramirez, 2011). During periods when an individual is attached
to the bottom they remain stationary. Individuals grow per capita at a time
dependent rate which may be negative or positive. Transport by drift, and
death through a negative growth per capita are the only mechanisms able to
remove individuals from the system.

1.4 Study Site

Research was conducted July 18-19, 2012 at Watershed 3 (WS3) at H.J. Andrews
Experimental Forest (HJA), located in the Willamette National Forest (Oregon
Cascades). HJA is a Long-Term Ecological Research (LTER) site funded by
the National Science Foundation. It has been used for many types of ecological
research and experiments. HJA has a complex network of rivers and streams
contained within watersheds. The study site for our experiment was a sec-
ond order stream in Watershed 3 (WS03) that empties into Lower Lookout
Creek (Andrews Website). We selected a reach within WS3 that had relatively
constant vegetative cover, soil composition, bedrock, gradient, channel cross-
sectional area, turbidity, and velocity. An 18-meter reach that was bedrock
dominated with a width of approximately 1.7 meters, a depth of .5 meters and
a velocity measured in the main channel of flow of .35 m/s was chosen for field
measurements. This reach was also chosen because the consistent features are
easy to model and due to the complexities of creating a flume capable of replicat-
ing the nuances of a natural system. In addition, the consistent features can be
generalized as constants within the mathematical model. Another important
aspect of this stream was the narrow channel width, which enabled the drift
net to capture the majority of tracers without the addition of a more complex
catching system.

2 Methods

2.1 Analytical Model

A population u(x, t) on a stretch of river Γ with length l, growth per capita r > 0
per unit time and rate of mobility µ > 0 at time t > 0 and upstream distance x >
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0 can be modeled using the the following integro-differential equation described
by Lutscher et al.(2005) and Ramirez (2011) :

∂u

∂t
(x, t) =

(
r

µ
− 1

)
u(x, t) +

∫
y∈Γ

K(y, x)u(x, t)dy. (1)

The dispersion kernel K(y, x) describes the probability that a drifting individual
disperses from y to x. Under the hypotheses considered by Ramirez (2011),
the movement of individuals in the drift is modeled by an advection diffusion
process, and an expression for K(y, x) under this assumption can be found using
the method described in Appendix (6). Fig (1) plots changes in K(y, x) with
respect to parameters of diffusion and velocity.

In Ramirez (2011) and Lutscher et al. (2005), the critical growth rate rcrit is
defined to be the minimum reproduction per individual per unit time at which
the zero-solution is unstable; with reproduction greater than rcrit, a nonzero
population will not reduce to zero. The critical rate rcrit can be derived analyt-
ically in terms of the rate of mobility µ and properties of the dispersion kernel
K, specifically as stated in Appendix (5.3).

The existing model is generalized to accommodate time dependent repro-
ductive rates; in this case (1) becomes

∂u

∂t
(x, t) =

(
r(t)

µ
− 1

)
u(x, t) +

∫
y∈Γ

K(y, x)u(x, t)dy. (2)

Additionally, periods of population death are considered, meaning for some t,
r(t) < 0.

The concept of a critical growth rate rcrit, while less precisely determined,
is generalized to properties of time-dependent functions of growth and death,
r(t), for which a population will persist, one of which properties is R:

R(T ) =

∫ T

0

r(t)dt. (3)

2.2 Numerical Methods

In order to assess the sensitivity of a population to time varying reproductive
rates, (2) was solved numerically. For all experiments , a population was simu-
lated on a river stretch of length l = 10 meters with parameter values D = 5.6,
v = 0.21, σ = 100, and µ = 1. For these parameters the constant rcrit = 0.97
was computed using (15) . The following numerical experiments were run:

i The analytical reproductive rate and the numerical model were reconciled
by running simulations with constant reproductive rates varying between
rcrit − 0.4, and rcrit + 0.4.

ii The population’s growth and decay over time, as well as its overall persis-
tence, were observed under the following reproductive-rate functions r(t):

4



0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

DistanceHMetersL

P
ro

ba
bi

lit
y

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

DistanceHMetersL

P
ro

ba
bi

lit
y

Figure 1: Probabilities of transition from y to a given x, K(y, x), plotted over a
river stretch for varying values of v (left) and D(right)

• Spike in reproduction at one point in time, with zero reproduction
otherwise (to simulate a breeding period in a year).

• Periodic impulses of reproduction with and without periods of death
(in the form of a negative reproductive rate).

• Various rearrangements of a normal distribution of reproductive rates
with a specified mean and standard deviation, with and without periods
of death.

The model equation (1) for population along a river stretch scales arbitrarily,
meaning that it can be used to indicate percentage of initial population at points
along its domain. Thusly lacking discretization, it will not directly indicate a
population’s extinction or persistence, though these qualities can be inferred
numerically. In simulations, a population that is substantially below its initial
condition and is decreasing further will be considered extinct. In some cases it
is appropriate to consider a cutoff for extinction and in other cases it is not. In
addressing the time elapsed until extinction, the specific definition of extinction
will be indicated.

All simulations were conducted using an implicit first-order solver. Time
steps were rescaled such that for each time-step ∆ti at which r(ti) ≥ 0.1, the
condition r∆ti = c was ensured for some constant c. When r(ti) < 0.1, the
condition became ∆ti = c. The Mathematica code used to run these simulations
is available upon request from the authors.

All simulations were done using experimentally determined values for D, v
and l. Other parameters used were σ and µ; under the assumption that an
organism spends the majority of its life cycle stationary, out of the drift, values
of σ were used that were around two orders of magnitude greater than those
of µ. For simplicity, and without biological consideration, the values µ = 1,
σ = 100 were used in all experiments.

5



2.3 Parameter Determination

Field research was conducted to experimentally determine the dispersion ker-
nel. The experiment was conducted with tracers made from flat toothpicks
divided into quarters. Flat toothpicks were chosen because of their similarities
to insects. The toothpicks were approximately insect shaped and had a near
neutral buoyancy. Neutral buoyancy enabled the tracer to stay within the water
column like an insect, without any effects of floating or sinking. Another im-
portant factor of using toothpicks is that they were easy to mark and recapture
for identification later. Tracers were released from four different locations and
four different times for a total of 16 data points. Each data point had a unique
pattern marked onto the toothpick in order to count them after collection . A
standard-sized drift net was placed near the end of the stream for the duration
of the experiment. The drift net spanned 70% of the width of the channel and
included the entire depth of the stream. Tracers that made it past the drift
net, or that went around, were collected in a small net by hand and included
in the tally of those collected by the drift net. For each release point and time,
80 tracers were used (20 toothpicks divided into quarters). The release points
were defined as the distance from the drift net. The first release distance was at
10 meters, the next was at 12 meters, the third at 15 meters, and the farthest
at 18 meters. At each release point, there was one person to release tracers
in the stream in order to have an instantaneous process. The first tracers for
each point were in the stream for a total of 960.0 seconds. The second group of
tracers for each point were in the stream for 729.6 seconds. The third group of
tracers were in the stream for 504.9 seconds, and the fourth group were in the
stream for 189.6 seconds. After the last group had been in the water for the
designated time, the drift net was pulled out of the water. Any tracers that had
made it past the net were collected and included in the tally of those collected
by the net. The tracers were taken out of the net, sorted, and hand counted.
The results of the collection are summarized in Table (1).

The number of tracers collected from distance x after time t, nx,t out of the
total number of tracers released from that distance for that amount of time,
Nx,t, corresponds to

nx,t = Nx,t

∫ t

0

P(Hx
0 ∈ dt(t))dt, (4)

where Hx
0 denotes the ‘stopping time’ for a tracer coming from distance x, which

is the time it takes to be collected after traveling that distance. The specific
expression for P(Hx

0 ∈ dt(t)) is derived in Appendix (7.1) in terms of D and v
to be

P(Hx
0 ∈ dt(t)) = D

∂P

∂x
(y, 0, s) (5)

under the assumption that the tracers involved are transported by means of an
advection-diffusion process, where P (y, x, t) denotes the probability of transi-
tioning from location x to y at time t.

6



0 20 40 60 80 100
10-26

10-18

10-10

0.01

106

1014

TimeHDaysL

P
op

ul
at

io
n

Figure 2: Results of experiment (i). The total percent of the initial population
remaining on the river for populations with constant r values varying between
rcrit − 0.4 and rcrit + 0.4.

The values of D and v were then determined using a least-squares fit.
The values obtained for D and v were then used in all subsequent experi-

ments.

3 Results

3.1 Numerical Results

Numerical simulations produced the following results:

(i)

The numerical solver’s correspondence with analytically-determined results was
confirmed by observing that the analytically-determined rcrit was indeed the
requirement for population-persistence under a constant reproductive function.
This result is evident from Figure (2).

(ii)

It was found that a population with a non-increasing time-dependent reproduc-
tive function r(t) is likely to have persisted until time T if∫ T

0

r(t)dt = R(T ) ≥ T · rcrit (6)

where R is explained in (3).
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Figure 3: The total percent of the initial population remaining on the river for
populations with reproductive impulses of durations varying between 1.6 and
3.2 days at the beginning of the simulation, and a death rate of 0.95 for the
remainder of the simulation. In these simulations, (6) was maintained. This
plot is for comparison to Figure (4).

Figure (3) displays the populations resulting from experiment (ii) in which
reproductive rates with impulses of varying durations are compared to a con-
stant reproductive rate of rcrit. It can be seen that all the populations converge
to the same value at time T regardless of the initial reproductive impulse width
provided (6) holds, implying that (6) is in fact a sufficient condition for persis-
tence. These plots can be compared to those in Figure (4), in which an increase
reproductive rate comes at the end of the simulation period. Together, these
sets of plots explain the model’s response to impulse-driven reproductive rates.

It was also found that a population with a time-dependent reproductive
function r(t) satisfying (6) will persist until time T if, for all intervals [ta, tb] ∈
[0, T ] such that r(t) < rcrit ∀t ∈ [ta, tb],

tb − ta < DT (mint∈(ta,tb)[r(t)]). (7)

DT (c) approximately describes the time it takes for a given population with
constant reproductive function r(t) = c < rcrit to decrease below ten percent of
its initial condition and can be approximated with a hyperbola as indicated in
Figure (6).

The model’s response to a normally-varying reproductive function with a
specified mean and standard deviation was examined, and it was found that the
deviations from the mean did not affect the persistence of the population; at
a high resolution their effects on the population are evident, as can be seen in
Figure (5)

Figure (6) displays numerical data used to determine the time-until-extinction
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Figure 4: The total percent of the initial population remaining on the river for
populations with reproductive impulses of durations varying between 1.6 and
3.2 days at the end of the simulation, and a death rate of 0.95 for the remainder
of the simulation. In these simulations, (6) was maintained. This plot is for
comparison to Figure (3).

DT (r) for constant reproductive rates r(t) = constant < rcrit. Data points in
(6) are fit to the curve a

b(r−c) where a = −1827.57 , b = 769.15 and c = 1.00.

In a standard population-simulation utilizing the classical exponential-growth
differential equation

rate of change in population ∝ population,

time-until-extinction will fit a curve of this form. The close fit suggests that, in
this respect, the effect of the advection-diffusion process is minimal.

3.2 Experimental Results

Through the tracer experiment outlined in section (2.3), values for advection
velocity v and dispersion coefficient D were determined as those that most
closely parameterized the model’s correlation with observed data, as explained
thoroughly in Appendix C (7).

The number of tracers collected, out of the total of 80 released from each
spatio-temporal location, is given in Table (1).

The value of v determined by this process was v = .21ms , whereas the
measured value of the water velocity 0.35ms , as mentioned in the study’s site-
description (1.4). These numbers do not represent the same velocity, and should
not be compared as such. The determined value of v is the mean velocity of
a toothpick undergoing non-linear motion, and the measured velocity is the
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Figure 5: Numerical simulations with normally-distributed reproductive rates
varying about a mean of the critical reproductive rate rcrit. The normal vari-
ation in reproductive function does not seem to effect the persistence of the
population whatsoever.
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Figure 6: Numerically simulated time-until-extinction for constant reproductive
rates varying between −1 and rcrit.
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Time/Distance 10m 12m 15m 18m
190s 46 31 6 1
505 s 51 33 22 1
730s 68 30 13 1
960 s 52 28 22 1

Table 1: Number of tracers collected out of 80 released from various distances
and timespans

velocity of an arbirarily chosen point within the stream. It is expected that
the value of the determined velocity is less than the measured velocity due to
measurements taken at a point of faster flow.

The value of the dispersion coefficient D obtained was 5.6m
2

s ; for reference,
other tracer experiments in water have determined dispersion coefficients to be

between 1 and 20m
2

s (Fischer, 1973).

4 Discussion

4.1 Biological Implications

The result of (i) demonstrates the accuracy of the numerical solution in that the
analytically proven value of rcrit is indeed the critical constant reproductive rate
for population persistence in the numerical simulations. Thus, the biological
implications of the simulations are as relevant as any determined under the
assumptions of the mathematical model governed by (1).

The results of (ii) quantify that a condition for persistence of a population
with a general time-dependent reproductive rate is the total reproduction per
individual per year. The implications of this are that populations of organisms
reproducing throughout a given year and those reproducing all at one point in
a given year are predicted by the model to have equal likelihoods of persistence;
e.g. the number of eggs laid in a year is more important than the timing of
the laying of the eggs. While the truth of such a conclusion within a biological
system is questionable due to unexamined factors (such as an environment’s
limiting response to an abundance of individuals), it does point out that the
effects of an advection-diffusion process alone cannot enforce a reproductive
schedule necessary for the persistence of a population.

As noted in the methods, the model never indicates a population of zero,
as it merely gives a percentage of the initial population remaining at a given
time. Thus, to discuss the time elapsed until extinction, it must be noted that
extinction is being defined as less than 10% of the initial population. Regard-
less of the assumptions employed, the value of DT (r), the time it takes for a
population to go extinct at a given reproductive rate r < rcrit, is relevant.
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4.2 A representative river stretch

Experimentally determined values of dimensionless quantities P and Q are ex-
plored through a contour plot in Figure (7). P and Q are defined as

P =
vl

D
(8)

Q =
v

σl
(9)

where the Peclét Number P is seen in Appendix A (15), σ is the mean rate
of exiting the advection and attaching to the benthos, D is the dispersion co-
efficient, v is the advection velocity, and l is the length of the river stretch.
Observing that PQ results in the cancellation of the l term and Q

P results in
the cancellation of the v term allows us to examine the sensitivity of a given
population’s rcrit

µ value to changes in l or v. In the experimentally determined
case the population will be less sensitive to increases in v which move the plot-
ted point along the dashed lines producing little change in rcrit

µ . Decreasing l,
however, will move the point along the dotted lines increasing rcrit

µ at a steeper
rate. Biologically, this means that streams similar to the one plotted will require
similar lengths if they are to maintain an population, while their velocities may
be more variable. The usefulness of this quantification is elaborated in Ramirez
(2011).

4.3 Future Research

Future research may expand upon these results by considering the effects of
time dependent reproductive rates on populations in dendritic networks. This
paper, as well as previous analytical research on population dynamics in river-
ine settings hypothesizes that the transport of individuals in even such complex
environments can be accurately modeled as an advection-diffusion process. Con-
firmation of this hypothesis would require a larger experimental data set as well
as a deeper study of the dynamics governing organism drift.

Further exploration may also be made into a space-varying reproductive
function r(x, t). This might have a biological motivation if insects are found
to lay their eggs preferentially in certain locations or generally upstream, a
plausible notion.

Further analytical quantifications of time- and/or space-varying reproductive
functions’ ‘critical quality’ can be explored, as this paper has only tested a few
such properties (e.g. R in (3)).

Another important area of consideration for future research is for the com-
parison of determined values of v with the mean velocity of the stream. In
this research, we compared the best-fit velocity with the velocity measured at
a single point in the part of the water column with highest flow, which is not
comparable to the velocity of a toothpick undergoing advection motion. How-
ever, the motion of such a tracer might be comparable to the mean flow velocity
over the cross-sectional area of the water column, which would be measured
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by dividing discharge by the cross-sectional area of the stream. This would be
easiest to perform on a stretch of stream with a discharge-gauging station.

5 Appendix A: Explanation of the Model

5.1 Model Explanation

The population’s governing integro-differential equation (1) comes from the fol-
lowing equation

∂u

∂t
(x, t) = ru− µu(x, t) + µ

∫
Γ

K(y, x)u(x, t)dy (10)

with a change of variables to tnew = µtold.

5.2 The Dispersion Kernel

**COMBINE THIS WITH SECTION (6)**
The dispersion kernel K(y, x) of equation (1), which describes the probability

that a drifting individual will disperse from position y to x, is given by the
expression

K(y, x) =

∫ ∞
0

σe−σtP (y, x, t)dt, (11)

where σ is the probability of a mobile individual attaching to the bottom from
the water column, and P (y, x, t) is the probability that an individual will have
transitioned from y to x in a time interval t and is the solution to the advection
diffusion equation:

∂P

∂t
(y, x, t) = D

∂2P

∂y2
(y, x, t)− v ∂P

∂y
(y, x, t) (12)

subject to boundary conditions P (0, x, t) = ∂P
∂t (l, x, t) = 0.

5.3 Value of rcrit

As explained in Ramirez (2011) and Lutscher et al. (2005), the constant critical
growth rate rcrit of a population can be derived in terms of the dispersion kernel
K and the rate of mobility µ in equation (1)

∂u

∂t
(x, t) =

(
r

µ
− 1

)
u(x, t) +

∫
y∈Γ

K(y, x)u(x, t)dy. (1)

Specifically,
rcrit = µ(1− ωK), (13)

where ωK is the largest eigenvalue of the operator

K[f ] =

∫
Γ

K(y, x)f(y)dy. (14)
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Definition (13) can be understood intuitively by the fact that the critical growth
rate represents the smallest growth rate at which the population can persist
(read: can have non-negative derivative with respect to time) for some pop-
ulation distribution, however populous or scarce. Thus, when r = rcrit, by
definition, we observe ∂u

∂t = 0. We examine a non-zero population distribution
u(x, t) at equilibrium for which K[u] = ωK · u, the most population-preserving
distribution possible:

0 =
∂u

∂t
(x, t)

=

(
r

µ
− 1

)
u(x, t) +

∫
y∈Γ

K(y, x)u(x, t)dy

=

(
r

µ
− 1 + ωK

)
u(x, t).

Here, by definition, r = rcrit, the minimum possible value of r such that ∂u
∂t ≥ 0.

Thus,

0 =

(
r

µ
− 1 + ωK

)
u(x, t)

⇒ 0 =

(
r

µ
− 1 + ωK

)
⇒ rcrit = r = µ(1− ωK), . (13)

It is shown in Ramirez (2011) that, for the specific dispersion kernel K
resultant of the chosen boundary conditions of the model used in this paper,
ωK = 1

ν where ν is the smallest solution solution to

tan(l · b(ν)) + 2
l · b(ν)

P
= 0, b(v) =

1

2D

√
v2 − 4Dσ(ν − 1) (15)

such that ν ≥ 1, where P is defined as the Peclét number P = v·l
D , a dimension-

less quantity comparing the importance of advection to diffusion in dispersion
(Ramirez, 2011).

Here, ωK is a function of the length of the river stretch l, velocity of advection
v, and diffusion coefficient D. As discussed at length in Lutscher et al. (2005),
this results in a ‘critical domain size’ and ‘critical advection velocity,’ which are
computed. Implications regarding the value of rcrit due to various changes to
the model’s diffusion coefficient and boundary conditions are also discussed.

6 Appendix B: Finding the Dispersion Kernel K
6.1 An identity derived from the Advection-Diffusion Equa-

tion Solution

We have seen SHOW IT IN SOME SECTION AND CITE IT HERE! that the
solution to the advection diffusion equation
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∂p

∂t
= D

∂2p

∂x2
− v ∂p

∂x
,

which we denote p(x, y, t), is the probability density function representing prob-
abilities of traveling through a linear flow from point x to point y after time
t.

The probability density function for a mobile individual to move from x to
y over all t, taking into consideration the fact that the individual will exit the
channel (attach, in the case of insects) at rate σ, is then given by

K(x, y) =

∫ ∞
0

σe−σtp(x, y, t)dt. (16)

We leave behind our analytic solution for p and aim to derive K in a different
way.

First, define the operator

A[g](x) = Dg′′(x)− vg′(x), (17)

so that the advection-diffusion equation now states

∂p

∂t
= A[p] (18)

Now, assuming K is integrable, we take A[K]

A[K(x, y)] =A[

∫ ∞
0

σe−σtp(x, y, t)dt]

=

∫ ∞
0

σe−σtA[p(x, y, t)]dt because integration w/r/t t and differentiating w/r/t x are linear

=

∫ ∞
0

σe−σt
∂p

∂t
dt by (18)

= σe−σtp(x, y, t)
∣∣∞
0
−
∫ ∞

0

σ(−σe−σt)p(x, y, t)dt by integrating-by-parts

=σδx(y) + σK(x, y) (19)

where δx(y) is the Dirac delta function1.
Now, we move terms and define a new operator based on A

(σ −A)[f ] = σf −A[f ]. (20)

Now, (19) states that

(σ −A)[K(x, y)] = σK(x, y)−A[K(x, y)] = σδx(y).

1 σe−σtp(x, y, t)
∣∣∞
0

= σδx(y) because lim
t→∞

e−σtp(x, y, t) = 0 and lim
t→0

e−σtp(x, y, t) =

σδx(y), which just means that at time t = 0, there is zero probability that any mobile
individual moves from any point x to any point y unless x = y, and so we have a spike of
probability mass (Delta function) along x = y as the probability distribution.
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Now, multiplying by arbitrary function f and integrating, we see∫ L

0

(σ −A)[K(x, y)]f(y)dy =

∫ L

0

σδx(y)f(y)dy.

Since A differentiates with respect to x, it can be moved outside of integra-
tion with respect to y, and by the definition of δ, we now have

(σ −A)

[∫ L

0

K(x, y)f(y)dy

]
= σf(x),

or, by the linearity of σ −A,

(σ −A)

[
1

σ

∫ L

0

K(x, y)f(y)dy

]
= f(x). (21)

By the continuity of all of the functions involved, the fundamental theory of
differential equations guarantees the uniqueness of this solution, meaning

(σ −A)[g](x) = f(x)⇒ g(x) =
1

σ

∫ L

0

K(x, y)f(y)dy. (22)

6.2 A Sturm-Liouville Identity

6.2.1 Lagrange’s Identity and the Sturm-Liouville Operator

To find K, we need to prove Lagrange’s Identity concerning the Sturm-Liouville
operator L, where

L[g](x) = (−p(x)g′(x))′ + q(x)g(x) (23)

for a twice-differentiable g in the domain of L.
First, Lagrange’s Identity :

−uL[v] + vL[u] = −[p(u′v − uv′)]′ = [pW (u, v)]′ (24)

for any twice-differentiable u, v, where W represents the Wronskian of u
and v

W (u(x), v(x)) = det

(
u(x) v(x)
u′(x) v′(x)

)
= u(x)v′(x)− u′(x)v(x).

17



Proof.

−[p(u′v − uv′)]′ = −p′(u′v − uv′)− p(u′v′ + u′′v − u′v′ − uv′′) by the chain rule

= p′(−u′v + uv′)− p(u′′v − uv′′) by canceling terms

= −p′u′v + p′uv′ − pu′′v + puv′′

= v(−p′u′ − pu′′) + u(p′v′ + pv′′) + puv − puv
= v(−p′u′ − pu′′ + qu) + u(p′v′ + pv′′ − qv)

= v((−pu′)′ + qu)− u((−pv′)′ + qv)

= vL[u]− uL[v].

6.2.2 Sturm-Liouville Identity Proof

We will now prove an identity regarding the Sturm-Liouville operator on the
functions of our concern; namely

L[g](x) = f(x)⇒ g(x) =
1

C

∫ L

0

G(x, y)f(y)dy (25)

whenever g(0) = 0 and g′(L) = 0. G and C are defined below in (32) and (34),
respectively.

Proof. First, let φ and ψ be twice-differentiable functions in the domain of L
such that

L[φ] = L[ψ] = 0, (26)

with the boundary conditions2

φ(0) = ψ′(L) = 0. (27)

Then

φL[g]− gL[φ]︸︷︷︸
=0

= (φ× f)− (g × 0)

= φf.

By Lagrange’s identity from (24), we also have that

φL[g]− gL[φ] = [p(φ′g − φg′)]′,

meaning

φf = [p(φ′g − φg′)]′. (28)

2Note that each of φ and ψ have just one of the two boundary conditions to which we hold
g.
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Also, by the same logic,
ψf = [p(ψ′g − ψg′)]′. (29)

Integrating (28), we see

∫ x

0

φ(y)f(y)dy =

∫ x

0

d

dy
[p(y)(φ′(y)g(y)− φ(y)g′(y))]dy

= p(y)[φ′(y)g(y)− φ(y)g′(y)]|x0
= p(x)[φ′(x)g(x)− φ(x)g′(x)]− p(0)[φ′(0)g(0)︸ ︷︷ ︸

=0

−φ(0)︸︷︷︸
=0

g′(0)]

= p(x)[φ′(x)g(x)− φ(x)g′(x)]. (30)

Integrating (29) on a different interval, we see∫ L

x

ψ(y)f(y)dy =

∫ L

x

d

dy
[p(y)[ψ′(y)g(y)− ψ(y)g′(y)]]dy

= p(y)[ψ′(y)g(y)− ψ(y)g′(y)]|Lx
= p(L)[ψ′(L)︸ ︷︷ ︸

=0

g(L)− ψ(L) g′(L)︸ ︷︷ ︸
=0

]− p(x)[ψ′(x)g(x)− ψ(x)g′(x)]

= −p(x)[ψ′(x)g(x)− ψ(x)g′(x)]. (31)

Multiplying (30) by ψ and (31) by φ, then adding them, we see that

ψ(x)

∫ x

0

φ(y)f(y)dy + φ(x)

∫ L

x

ψ(y)f(y)dy

= p(x)[φ′(x)g(x)− φ(x)g′(x)]ψ(x)− p(x)[ψ′(x)g(x)− ψ(x)g′(x)]φ(x).

By defining a function G as3

G(x, y) =

{
ψ(x)φ(y), y ∈ [0, x)

ψ(y)φ(x), y ∈ [x, L],
(32)

we can now our previous statement to

∫ L

0

G(x, y)f(y)dy = p(x)[φ′(x)g(x)− φ(x)g′(x)]ψ(x)− p(x)[ψ′(x)g(x)− ψ(x)g′(x)]φ(x)︸ ︷︷ ︸
=Cg(x)

.

(33)
We will now show that the term on the right side of (33) is a scalar multiple of
g.

3Note that G is continuous, because lim
y→x−

G(x, y) = lim
y→x+

G = G(x, x).
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p[φ′g − φg′]ψ − p[ψ′g − ψg′]φ = pg(φ′ψ − φψ′) + pg′(−φψ + φψ︸ ︷︷ ︸
=0

)

= −pg(φψ′ − ψφ′)
= g × (−pW (φ, ψ))︸ ︷︷ ︸

=C(x)

.

To show that C(x) is indeed a constant, we take its derivative:

−C ′ = (pW (φ, ψ))′ = p′(φψ′ − φ′ψ) + p(φ′ψ′ + φψ′′ − φ′′ψ − φ′ψ′)
= p′(φψ′ − φ′ψ) + p(φψ′′ − φ′′ψ)

= φ(p′ψ′ + pψ′′)− ψ(p′φ′ − pφ′′) +qφψ − qφψ︸ ︷︷ ︸
+0

= φ[(pψ′)′ + qψ]− ψ[(pφ′) + qφ]

= φ L[ψ]︸︷︷︸
= 0 by (26)

−ψ L[φ]︸︷︷︸
= 0 by (26)

= 0.

By (26), terms cancel, and we see that C ′(x) = 0, and thus C is indeed a
constant, written

C = −pW (φ, ψ) (34)

Now, (33) becomes ∫ L

0

G(x, y)f(y)dy = Cg(x),

and we conclude

L[g](x) = f(x)⇒ g(x) =
1

C

∫ L

0

G(x, y)f(y)dy, (35)

which is (25), and we are done.

6.3 Defining φ and ψ explicitly

For completeness, solving for φ and ψ will be outlined.
The general solution to the differential equation

L[f ] = (−pf ′)′ + qf = 0

with p and q defined in (41) and (42), yields the solution

f(x) = e
v

2D x(c1e
irx + c2e

−irx),
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where

r =

√
−( vD )2 − 4σD

2
. (36)

In the case of φ, a solution to L[φ] = 0, the boundary condition φ(0) = 0
implies that c2 = −c1, leaving us with

φ(x) = ce
v

2D x(eirx − e−irx) = ce
v

2D xsin(rx), (37)

with r defined in (36).
In the case of ψ, another solution to L[ψ] = 0, the boundary condition that

ψ′(L) = 0 implies, with a bit of algebra, that CHECK THIS CHECK THIS
CHECK THIS!

c2 = −c1e2irL

(
v + 2Dir

v − 2Dir

)
,

leaving us with

ψ(x) = ce
v

2D x(eirx − e2irL

(
v + 2Dir

v − 2Dir

)
e−irx), (38)

with r defined in (36).
It is worth noting that in the final solution of K, there are terms C and G,

which are left in terms of particular solutions to to differential equations φ and
ψ. However, in the final formulation of the kernel, we have K ∝ G

C , and both
G and C are proportional to (cφ × cψ), those being the coefficients of whatever
specific solutions are chosen. Thus, K can be given in terms of arbitrary specific
solutions or general solutions without affecting the values (that is, any chosen
values of cφ and cψ on φ and ψ are irrelevant).

6.4 Direct Definition of K
We have shown in (6.1) and (6.2) that for any twice-differentiable g in the
domain of (σ −A) and L, which are the operators defined by

(σ −A)[g] = σg −Dg′′ + vg′,

L[g] = (−pg′)′ + qg

we have

(σ −A)[g](x) = f(x)⇒ g(x) =
1

σ

∫ L

0

K(x, y)f(y)dy (39)

L[g](x) = f(x)⇒ g(x) =
1

C

∫ L

0

G(x, y)f(y)dy. (40)

To start we explicitly define

p(x) = e
−v
d x (41)

q(x) =
σ

D
e

−v
d x =

σ

D
p(x). (42)
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Now let g be a function in the proper domain such that L[g](x) = f(x). That
means

f = L[g] =(−pg′)′ + qg

=qg − p′g′ − pg′′

=
σ

D
e

−v
D x − e

−v
D xg′′ +

v

D
e

−v
D xg′

=
1

D
e

−v
D x(σg −Dg′′ + vg′)

=
1

D
p× (σ −A)[g].

Putting this all together,

(σ −A)[g](x) =
Df(x)

p(x)
. (43)

Now, by (39), we see that (43) tells us that

g(x) =
1

σ

∫ L

0

K(x, y)
Df(y)

p(y)
dy.

On the other hand, since L[g](x) = f(x), (40) tells us that

g(x) =
1

C

∫ L

0

G(x, y)f(y)dy.

Putting this all together, we have

1

σ

∫ L

0

K(x, y)
Df(y)

p(y)
dy =

1

C

∫ L

0

G(x, y)f(y)dy.

Since this is true for all f such that L[g] = f for some g, which can basically
be any function, the integral and the arbitrary function can be omitted4 to
conclude

K(x, y)
D

σp(y)
=

1

C
G(x, y).

or simply

K(x, y) =
σp(y)

CD
G(x, y) (44)

with p, C, and G defined in (41), (34), and (32), respectively.

4Leaving aside the issue as to whether or not L[g] can equal such functions, suppose
L[g] = δξ, ξ ∈ [0, L] (Delta function). Then the integral with f(y) = δξ(y) results in the desired
equality (the equality without f and without the integral: equation (44)). Furthermore,
assuming a reasonably broad algebra of functions (see Stone-Weierstrass Thm. conditions)
are solutions to L[g] = f , and that sufficient linear combinations and products of them are
also solutions, then there exists a solution f that arbitrarily approximates δξ for any ξ and
thus δξ can be said to be a value of L[g] for some g.
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7 Appendix C

7.1 Stopping-Time Probability Derivation

The following outlines the method by which our model to predict the likelihood
of an individual having transitioned from a point x on a river stretch to point
0 after time t. As will be shown, the interest is in the ‘stopping time’ H0,
a random variable denoting the length of time until another random variable
completes a stochastic trajectory.

We examine a changing probability distribution u(y, t) denoting the proba-
bility of a particle existing at location y < L at time t subject to the following
condition:

∂u

∂t
(y, t) = Ay[u](y, t) = D

∂2u

∂y2
(y, t)− v ∂u

∂y
(y, t) (45)

u(y, 0) = u0(y)

u(0, t) = f(t)

We use Dynkin’s formula, which states the equivalence of the probability of
existingg at y after time t, denoted u(y, t), with that of arriving at an initial
position through the equivalent backwards process (arriving at a given location
at t = 0)5:

u(y, t) = EX(0)=y[u0(Xt)× 1(t < H0) + f(t−H0)× 1(t > H0)] (46)

where

• u0(x) = u(x, 0), the given distribution of probability of location of an
individual at time t = 0;

• 1(b) =

{
1, b is true

0, b is false
, an indicator function;

• X(t) is a random variable denoting a location at time t, meaning P(X(t) =
y) = u(y, t);

• H0 denotes the stopping time of the random variable X(t); that is, H0 is
a random variable denoting the length of time until X(t) = 0 to end its
‘random walk’. As we will see, we are interested in P(H0 ∈ dt).

A probabilistic analysis of (45) and (46) under these conditions yields that6

5The ‘backwards process’ is a stochastic trajectory between two spatio-temporal points in
the backwards time direction such that the probability of traveling along a given path is equal
to the likelihood of traveling along that same path in the forwards process being modeled.

6The complexity of this derivation is beyond the scope of this paper, but it follows from
the definition of expected value.
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u(y, t) =

∫ L

0

u0(x)P (y, x, t)dx+

∫ t

0

f(t− s)P(H0 ∈ ds)ds (47)

where P (y, x, t) denotes the probability density of completing a transition from
x to y at time t and is the solution to the backwards advection-diffusion equa-
tion with absorbing boundary condition P (0, x, t) = P (y, 0, t) = 0; a direct
expression for P is omitted but can be found in Borodin and Paavo’s Handbook
of Brownian Motion.

Next, we analyze another quantity in two ways to obtain another expression
for u(y, t):

I =

∫ t

0

∫ ∞
0

∂

∂t
[P (y, x, t− s)u(x, s)]dxds

=

∫ ∞
0

∫ t

0

∂

∂t
[P (y, x, t− s)u(x, s)]dsdx

=

∫ ∞
0

P (y, x, 0)u(x, t)− P (y, x, t)u(x, 0)dx

Noting the P(y,x,0) is equal to the delta function allows us to rewrite the above
expression

I = u(y, t)−
∫ L

0

P (y, x, t)u0(x)dx. (48)

On the other hand, by the product rule we may also write7

I =

∫ t

0

∫ ∞
0

∂

∂t
P (y, x, t− s)u(x, s) + P (y, x, t− s) ∂

∂t
u(x, t)dxds

=

∫ t

0

∫ ∞
0

−
(
D
∂2P

∂x2
+ v

∂P

∂x

)
u(x, s) + P (y, x, t− s)

(
∂2u

∂x2
− v ∂u

∂x

)
dxds

=

∫ t

0

∂P

∂x
(y, 0, t− s)u(x, s)−D ∂

∂x
u(0, s)P (y, 0, t− s) + vP (y, 0, t− s)u(0, s)ds

=

∫ t

0

D
∂P

∂x
(y, 0, t− s)f(s)ds

=

∫ t

0

D
∂P

∂x
(y, 0, s)f(t− s)ds. (49)

Putting (48) and (49) together, we see that

∫ t

0

D
∂

∂x
P (y, 0, s)f(t− s)ds = u(y, t)−

∫ L

0

P (y, x, t)u0(x)dx

⇒ u(y, t) =

∫ t

0

D
∂P

∂x
(y, 0, s)f(t− s)ds+

∫ L

0

P (y, x, t)u0(x)dx. (50)

7Here we change variables from s to t− s which, after changing the differential and limits
of integration, amounts to this equation’s final form.
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Now, putting (47) and (50) together, we see that

∫ t

0

Df(t−s)∂P
∂x

(y, 0, s)ds+

∫ L

0

u0(x)P (y, x, t)dx =

∫ t

0

f(t−s)P(H0 ∈ ds)ds+
∫ L

0

u0(x)P (y, x, t)dx

⇒ P(H0 ∈ ds) = D
∂P

∂x
(y, 0, s), (51)

giving a direct expression for P(H0 ∈ ds).

7.2 Determination of Parameters Using Stopping-Time

The percentage of tracers collected in the stream experiment in section (2.3)
corresponds to the likelihood of a tracer having transitioned a given distance
after a given time. Specifically, letting N(x, t) denote the percentage of tracers
collected at distance 0 after being released from distance x and after an elapsed
time t, we can state that

N(x, t) =

(∫ t

0

P(H0 ∈ ds)ds
)

[x], (52)

which can be intuitively understood to mean that the likelihood of having from
x to 0 by time t is equal to the integral of the probability of that transition
happening at a given unit time over all possible units of time between 0 and t.

As the direct formula for P(H0 ∈ ds) is in terms of parameters v and D
representing advection velocity and diffusion, respectively, measured values of
N(xi, tj) can be used to determine the real values of those parameters within
the model. Specifically, the values of D and v such that

∑
i

∑
j

(
(N(xi, tj)−

(∫ tj

0

P(H0 ∈ ds)ds
)

[xi]

)2

is minimized are presumed to be the ‘real’ values of v and D.
While this is the only way to determine D, a descriptive parameter, v, the

advection velocity, can be assumed to be roughly equal to the velocity of the
current in which the experiment took place. Thus, the validity of the claim on
the ‘real’ values of D and v can be cross-checked against reality.
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