
Maximizing Firm Profit Function
with Risk-Averse Labor Supply

Zach Siegel
UCLA Anderson School of Management

zachary.edmund.siegel@gmail.com

1 Introduction

During the recent COVID-19 pandemic, a pri-
mary concern in “flattening the curve” of infec-
tion is to prevent medical facilities from being
overwhelmed. Unfortunately, while demand for
medical personnel is high during a pandemic,
supply of personnel may be reduced. It is essen-
tial for a medical firm to maintain a sufficiently
high wage to capture or retain a sufficient frac-
tion of the workforce.

While giving an overview of the domain-specific
rationale for the model, this paper explores the
optimization of the objective function, which
is concave in each variable but not jointly con-
cave.

2 Model

2.1 Worker Utility

It is established in [1] that individuals tend to
be risk-seeking when facing a certain loss. Fur-
thermore, workers who are more risk-averse with
respect to their income may be more disinclined
than others to face an expensive accident.

We consider the income utility and injury disu-
tility to be additively separable. Let

U(r) = utility of payment r

V (H) = disutility of injury of magnitude H

Ψ(r) = U(r)− V (H)

= Utility of wage r and

injury of (fixed) magnitude H.

where U ′(r),V ′(H) > 0, and U ′′(r),V ′′(H) < 0
reflecting risk-aversion in gains and risk-seeking
in losses. Utility Ψ(r) is the utility of income r
along with the pain and suffering of an injury,
which must therefore satisfy Ψ(r) < U (r). We
consider H to be exogenous.

In general, neither a higher or lower income
necessarily induces risk-aversion, and we con-
sider that workers respond to income increases
(via U(r)) with constant absolute risk aver-
sion (CARA). In the domain of loss/injury (via
V (H)), for simplicity we consider a (slightly
different) CARA function as well. However,
with the motivation that risk-averse workers
are also more injury-averse, we designate one
risk-aversion parameter θ > 0 to attenuate risk
response in both domains:

U(r) =
1
θ
(1− e−θr)

V (H) = θ′(1− e−
1
θ′H)

θ′ = tθ, t > 0.

1

mailto:zachary.edmund.siegel@gmail.com

2.2 Probability of Worker Injury and Labor Supply 2 MODEL

-2 -1 0 1 2

-1.5

-1.0

-0.5

0.0

0.5

1.0

lo
ss
↑

Utility

ga
in
↓

θ=1

θ=2

θ=5

Figure 1: Utility in gains and losses attenuated by
a single risk-response parameter θ

Note that as θ increases, U(r) becomes flat-
ter, reflecting risk-aversion in income. As θ′

increases, V (H) becomes steeper, reflecting less
risk-seeking in losses. Allowing θ′ = tθ re-
flects that individuals’ risk-aversion in income
may accompany less risk-seeking behavior in
losses. For simplicity, here we consider t = 1, or
θ′ = θ.

Figure 1 demonstrates workers’ utility response
to gains (U(r)) on the positive side of the
horizontal axis, and utility response to losses
(−V (H)) on the negative side of the horizontal
axis. Note, as will be critical, that in addition
to flattening and steepening the utility and disu-
tility response curves, respectively, a higher risk-
response factor θ also monotonically decreases
utility at any income or injury level.

Remark 1. Both U(r) and −V (H) are decreas-
ing in θ.

Proof. First, U(r) is decreasing in θ:

d

dθ

1
θ
(1− e−θr) = (1 + θr)e−θr − 1

θ2

≤ 0

⇔

(1 + θr)e−θr − 1 ≤ 0

⇔

1 + θr ≤ eθr

which is true as 1 + x ≤ ex for all x.

In addition, −V (H) is decreasing in θ:

d

dθ
− θ(1− e−

1
θH) = −1 + (1 + H

θ
)e−

H
θ

≤ 0

⇔

1 + H

θ
≤ e

H
θ

which is true for the same reason.

2.2 Probability of Worker Injury
and Labor Supply

Let a worker normally earn wage w but with
probability p earn no income income due to an
accident or injury that causes pain and suffering
H. It is natural to consider a worker buying
insurance at the level I that maximizes their
expected utility.

As in [2], consider perfect, load-free insurance,
which necessarily has price p

1−p per unit insur-
ance, so that the expected payout of insurance
is 0:

2

2 MODEL 2.3 Firm Profit

E(payout) =
insurer pays︷ ︸︸ ︷
p(−I) +

insurer is paid︷ ︸︸ ︷
(1− p)(p

1− pI)

= 0.

That is, in the case of an accident, the insurer
pays I to the worker; in the case of no accident,
the worker pays p

1−pI. The expected worker
utility is then

E = (1− p)U(w− p

1− pI) + pΨ(I).

The conditions described for U and Ψ (concave,
increasing) ensure a first-order condition will
yield the optimal I without substituting the
functional forms:

0 = (1− p)U ′(w− p

1− pI)
−p

1− p + pΨ′(I)

⇓

Ψ′(I) = U ′(w− p

1− pI).

In the case of the CARA functional forms as-
sumed above for U and Ψ, this implies I =

(1− p)w and the worker’s expected utility E

is

E =
1
θ
(1− e−θ(1−p)w) + pθ(1− e−

H
θ).

We consider that a worker is willing to work at
wage w if expected utility E > 0.

2.3 Firm Profit

Consider a firm that hires L workers at wage
w at risk level p. As in [2], probability of acci-

dent p is endogenous, and the firm attempts to
maximize profit as defined by production minus
wages and cost of maintaining a desirable safety
level.

The cost of maintaining safety level (1 −
p) is C(1 − p), where C(0) = 0 and
lim(1−p)→1 C(1 − p) = ∞. We assume C to
be convex and strictly increasing. A natural
candidate is

C(1− p) = c · 1− p
p

for some cost of safety c > 0.

Let the firm’s (monetized) production function
φ(L, p) represent the output of the firm with
L employees at risk level p. Production could
be represented by revenue or a monetization of
services provided, such as patients served.

We consider the case of labor scarcity in which
productive output may simply be proportional
to labor level L and independent of probability
of injury p:

φ(L, p) = γL

where γ represents the productive output per
employee. Note that while φ(L, p) does not
depend on p, the number of workers L does
depend on p, which assumes that a worker can be
equally productive at any probability p of injury
such that their utility is positive. More risk-
averse workers refuse to work at high p, but when
they work they are equally productive.

The firm’s profit can then be written

3

2.4 Worker Type and Population 2 MODEL

Π = φ(L, p)−wL−C(1− p)

= (γ −w)L− c1− p
p

. (1)

2.4 Worker Type and Popula-
tion

Consider a heterogeneous population of workers
characterized by their risk-response parameter
θ ∼ F (·) where CDF F has positive support.
Suppose there are L total potential workers, and
a fraction β of them decide to work at a given
p and w. That is, L in the firm profit function
can be written

L = βL. (2)

As noted above, worker utility at any wage is
strictly decreasing in the risk-response param-
eter θ: a higher θ entails a flatter and lower
utility from wages, and a steeper and higher
disutility from injury H. So, for a fixed wage
w, probability of accident p, and injury level H,
there is a risk-response θ̃ above which workers
will not work.

Then the fraction of workers who will work is
β = F (θ̃) where, at θ̃, expected utility E = 0.
That is, θ̃ (> 0) satisfies the equation

0 = E

=
1
θ̃
(1− e−θ̃(1−p)w) + pθ̃(1− e−

H
θ̃).

Unfortunately, the cutoff risk-response θ̃ cannot
be written analytically in terms of firm decisions
p and w. However, the wage that induces cutoff

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

7

p

θ˜

Feasible Region for Finite, Positive Wage

H=0.75
H=1.5
H=5

Figure 2: The feasible region on probability of acci-
dent p and cutoff risk-resonse θ̃ resulting
in a finite cutoff wage.

risk-response θ̃ can be written

w =
−1

θ̃(1− p)
ln
(

1− pθ̃2(1− e−
H
θ̃)
)

(3)

where the obvious restriction that 0 < w < ∞
corresponds to

p <
1

θ̃2(1− e−
H
θ̃)

.

This is a non-convex constraint, with feasible re-
gion illustrated in Figure 2. Outside the shaded
region, the risk and cost of an injury are suffi-
ciently high to require an infinite wage to induce
workers at risk type θ̃ to work.

Finally, we assume a functional form for the
worker type distribution function: θ ∼ Unif[0, θ],
and

β = F (θ̃) =
θ̃

θ
, (4)

where θ is the maximum worker risk-
response.

4

2 MODEL 2.5 Firm Profit Maximization

Remark 2. Note that the wage strictly in-
creases in θ̃, meaning that aiming to capture
more risk-averse workers requires a higher wage.
The wage is also strictly increasing in p, mean-
ing that a riskier job requires a higher wage to
capture equally risk-averse individuals.

Proof.

∂w

∂θ̃
=

ln(1− pθ2(1− e−
H
θ̃))

θ̃

+
2pθ̃(1− e−

H
θ̃)− pHe−

H
θ̃

1− pθ̃2(1− e−
H
θ̃)

≥ 0

⇔

ln(1− pθ̃2(1− e
−H
θ̃))

≥ −2pθ̃2(1− e−
H
θ̃)− pHθ̃e−

H
θ̃

1− pθ̃2(1− e−
H
θ̃)

The left-hand side is bounded below by:

−pθ̃2(1− e−
H
θ̃)

1− pθ̃2(1− e−
H
θ̃)

for the simple reason that for any x > −1, ln(1+
x) ≥ x

1+x .

The right-hand side is bounded above by this
same expression: they have the same denomina-
tor, and comparing their numerators reduces to
1 + H

θ̃
≤ e

H
θ̃ , which is true because 1 + x ≤ ex

for all x.

The proof that ∂w
∂p > 0 is trivial.

2.5 Firm Profit Maximiza-
tion

Substituting the wage equation (3), the labor
supply equations (4) and (2), in the firm profit

(1) yields the following maximization problem
for the firm:

Maximize
p,θ̃,w,L

Π = (γ −w)L− c1− p
p

s.t. w =
−1

θ̃(1− p)
ln
(

1− pθ̃2(1− e−
H
θ̃)
)

L =
L

θ
θ̃

0 ≤ p ≤ 1

where w and L are clearly just splitting variables.
The problem can be written succinctly as:

Maximize
p,θ̃

Π = (5)

L

θ

(
γθ̃+

1
1− p ln

(
1− pθ̃2(1− e−

H
θ̃)
))
− c1− p

p

0 ≤ p ≤ 1

0 ≤ θ̃ ≤ θ

Remark 3. Note that Π in (5) is concave sep-
arately in both p and θ̃. While the (implicit)
feasible region is not convex, this may still per-
mit fruitful second-order optimization methods.
Furthermore, this feasible region is compact due
to the bounds on p and θ̃, allowing straightfor-
ward sampling for numerical methods.

It would remain to show that Π is jointly con-
cave in p and θ̃ on its feasible set. In fact, it is
not: it clearly violates Jensen’s inequality. Note
that the wage in (3),

w =
−1

θ̃(1− p)
ln
(

1− pθ̃2(1− e−
H
θ̃)
)

,

approaches ∞ when the argument of the log
approaches 0 (meaning Π→ −∞) or when

p→ 1
θ̃2(1− e−H/θ̃)

.

5

2.5 Firm Profit Maximization 2 MODEL

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

p

θ˜
Concavity of Profit

Feasible Region
Concave Region

Figure 3: The profit Π seems to be concave on its
entire domain.

This defines a nonconvex region in the (p, θ̃)
plane on which profit is finite. Figure 3 illus-
trates this region, which is implicitly the domain
of optimization, as the objective function is not
defined outside this region.

Still, numerical experimentation seems to show
that Π is in fact jointly concave on the interior
of its feasible set. A function of two variables
with negative second partial derivatives is jointly
concave if and only if its Hessian has positive
determinant. Figure 3 also illustrates the region
on which this condition holds, which seems to
be the entirety of the feasible region (noting
numerical instability on the boundary where
Π→ −∞).

Proof. (Π concave in p and θ̃) Note that the
second three terms (excluding −2c

p3) of

∂2Π
∂p2 =

−2c
p3 +

L

θ

−θ̃4(1− e−H/θ̃)

(1− p)(1− pθ̃2(e− e−H/θ̃))2

− L

θ

−2θ̃2(1− e−H/θ̃)

(1− p)2(1− pθ̃2(e− e−H/θ̃))

+
L

θ

2 ln(1− pθ̃2(1− e−H/θ̃))

(1− p)3

are negative if and only if

ln(1− pθ̃2(1− e−H/θ̃)) ≤ (1− p)θ̃2(1− e−H/θ̃)

1− pθ̃2(1− e−H/θ̃)

+
1
2 (1− p)2θ̃4(1− e−H/θ̃)

1− pθ̃2(1− e−H/θ̃)
.

For all values at which the left-hand side is
defined, the right-hand side is positive, and the
left-hand side is negative (as ln(1 + x) ≤ x ∀ x,
the left-hand side is bounded above by −pθ̃2(1−
e−H/θ̃) < 0).

Similarly, ∂2Π
∂θ̃2 < 0:

∂2Π
∂θ̃2 = −L

θ

(
Hpe−H/θ̃ − θ̃pe(1− e−H/θ̃)

)2

(1− p)
(

1− pθ̃2(1− e−H/θ̃)
)2

− L

θ

2p(1− e−H/θ̃)− H2p
θ̃2 e−H/θ̃ − 2Hp

θ̃
e−H/θ̃

(1− p)
(

1− pθ̃2(1− e−H/θ̃)
) .

The first term is clearly negative because of the
squared terms in the numerator and denomina-
tor. The second term is negative if and only
if

2p(1− e−H/θ̃) ≥ (
H2p

θ̃2 +
2Hp
θ̃

)e−H/θ̃

which reduces to

eH/θ̃ ≥ 1
2

(
H

θ̃

)2
+
H

θ̃
+ 1,

which holds because ex ≥ 1
2x

2 + x+ 1 for all
x ≥ 0.

6

3 OPTIMIZATION

3 Optimization

As a benchmark, and to conduct sensitivity anal-
ysis for this model for another paper for another
course, Mathematica’s built-in NMinimize was
able to optimize this objective over a wide range
of parameters. According to [3], NMinimize uses
a combination of a differential evolution algo-
rithm and interior point methods to maximize
over arbitrary regions with possibly many local
optima.

The optimization implementations for this
project were done in MATLAB, and MATLAB’s
fmincon function was also used as a bench-
mark.

3.1 Newton’s Method

Newton’s Method is ideal for unconstrained op-
timization of twice-differentiable, convex func-
tions.

The optimization problem (5),

Maximize
p,θ̃

Π =

L

θ

(
γθ̃+

1
1− p ln

(
1− pθ̃2(1− e−

H
θ̃)
))
− c1− p

p

0 ≤ p ≤ 1

0 ≤ θ̃ ≤ θ,

does not have a concave objective, and is con-
strained. Still, as the objective is separately
concave in p and θ̃, and Newton’s Method may
be able to find a solution when initialized at a
feasible point. Furthermore, as illustrated in Fig-
ure 3, the function seems to have joint convexity
on (much of) the interior of its domain.

Newton’s Method can only proceed from an
initial point at which a function, its gradient,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p0

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Figure 4: Newton’s Method converges to (close to)
a globally optimal value of (p, θ̃) only
for very few inital points. The curve de-
fines the points in the domain of problem
(5) at which the objective, gradient, and
Hessian are defined. The grid depicts
the (very few) initial points at which a
near-global optimum is attained.

7

3.3 Exhaustive Search Over One Variable 3 OPTIMIZATION

and its Hessian are defined. As can be seen
in Figure 4, even within this region, Newton’s
Method fails to converge to a near-global opti-
mum from almost any initial points (with the
near-global optimum determined by MATLAB’s
built-in fmincon function, which agreed with
Mathematica’s built-in NMinimize for several
parameter values examined). Both of these per-
form constrained optimization.

The resulting values p∗ from naively using New-
ton’s Method were often outside of the feasible
region [0, 1], though interestingly the uncon-
strained optimal θ̃ seemed to be within [0, θ] in
all experiments.

The implementation of Newton’s Method can
be found in Section 5.1.

3.2 Newton’s Method with Loga-
rithmic Barrier

To enforce constraints, we employ a logarithmic
barrier function, and maximize

Π̃ = tΠ + ln(1− p) + ln(p) + ln(θ̃) + ln(θ+ θ̃)

which means

∇Π̃ = t∇Π +

[1
p −

1
1−p

1
θ̃
− 1

θ−θ̃

]

∇2Π̃ = t∇2Π +

−1
p2 − 1

(1−p)2 0
0 −1

θ̃2 − 1
(θ−θ̃)2

This optimization was performed with multiple
values of t (from 0.5 to 1000) with comparable
results. The accuracy of this method seems to
be hindered more by the lack of joint concavity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p0

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p0

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Figure 5: The initial points from which Newton’s
Method with logarithmic barrier func-
tions attained near-globally optimal ob-
jective. Parameters are the same as in
Figure 4. In the first image, t = 1 and
in the second t = 100.

of Π than by the relative accuracy of the optima
resulting from the barrier functions.

The accuracy of this method is examined in
Figure 5. The code used to generate these plots
is in Section 5.2.

3.3 Exhaustive Search Over One
Variable

A natural solution to the non-concavity of (5) is
to maximize over one variable while performing
grid search over the other.

This seems like a suitable method for this prob-

8

4 CONCLUSION

0 1 2 3 4 5 6
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1.5
104

Figure 6: The first figure depicts the optimal value
p∗(θ̃) found via one-variable minimiza-
tion over an exhaustive grid of values
of θ̃. The second figure depicts the
optimal value of the objective function
f(p∗(θ̃), θ̃) evaluated at each value of θ̃
and the optimal p∗(θ̃)

lem, as the domain is compact, and the objective
is concave in each of its variables.

As can be seen in Figure 6, this method achieves
the following:

• Agrees with the output of the built-in
fmincon over each one-variable optimiza-
tion problem (except where numerically un-
stable).

• Coincides with the global optimum (p∗, θ̃∗)
when the grid search reaches θ̃∗.

Clearly, in Figure 6 there is numerical insta-
bility when θ̃ is close to θ (= 6 in the figure).

This is an unfortunate by-product of the numer-
ical technique, which seems to work extremely
well over the region on which it is numerically
stable.

The implementation of this method can be found
in Section 5.3

4 Conclusion

Even on a compact, low-dimensional domain,
and even with concavity separately in each vari-
able, it is not always straightforward to maxi-
mize a given function made up of simple parts.
The function Π in (5) is not (jointly) concave,
and Newton’s Method with logarithmic bar-
rier functions fails to converge close to an op-
timum from almost any initial points in the
domain.

Grid search over a (very) small number of dimen-
sions is a practical and easy-to-implement solu-
tion to almost any optimization problem with a
low-dimensional domain. Optimizing over the
remaining variable(s) using second-order meth-
ods should be far more efficient than exhaustive
grid search over the entire domain.

Comparing any technique with mature solvers
such as CVX, fmincon (MATLAB), and
NMinimize (Mathematica) is a constant re-
minder of the challenge of robust numerical sta-
bility under changes in parameters.

9

5 CODE

5 Code

5.1 Newton’s Method Accuracy

Lbar = 30;
thetabar = 6;
ggamma = 2.25;
c = 5;
H = 35;
subfun0 = @(theta) exp(-H/theta);
subfun1 = @(theta) 1-exp(-H/theta);
subfun2 = @(p,theta) 1-p*(theta^2)*(1-exp(-H/theta));
subfun3 = @(p,theta) p*H*exp(-H/theta) - 2*p*theta*(1-exp(-H/theta));
const1 = Lbar/thetabar;
Pi = @(p,theta) const1*(ggamma*theta + (1/(1-p))*log(subfun2(p,theta))) -
c*((1-p)/p);
dPidp = @(p,theta)c*((1-p)/(p^2)) + c/p + const1 *(-((
(theta^2)*subfun1(theta))/((1-p)*(subfun2(p,theta)))) + (
(1/(1-p)^2) * log(subfun2(p,theta))));
dPidtheta = @(p,theta) const1 * (ggamma + ((p*H*subfun0(theta)
-2*p*theta*subfun1(theta))/((1-p)*(subfun2(p,theta)))));
PiGrad = @(p,theta) [dPidp(p,theta);dPidtheta(p,theta)];
dPi2dp2 =@(p,theta) -2*c*(1-p)/(p^3) - 2*c/(p^2) + const1*((-theta^4 *
subfun1(theta))/((1-p)*subfun2(p,theta)^2) -(2*theta^2*subfun1(theta))/((1-p)^2
* subfun2(p,theta)) + 2*log(subfun2(p,theta))/((1-p)^3));
dPi2dtheta2 =@(p,theta) const1*(-subfun3(p,theta)^2/((1-p)*subfun2(p,theta)^2)
+ (-2*p*subfun1(theta) + (p*(H^2)/(theta^2) + 2*p*H/theta)*subfun0(theta))
/((1-p)*subfun2(p,theta)));
dPi2dpdtheta =@(p,theta) const1*(((theta^2) *
subfun1(theta)*subfun3(p,theta))/((1-p)*subfun2(p,theta)^2) +
(H*subfun0(theta))/((1-p)*subfun2(p,theta)) -
(2*theta*subfun1(theta))/((1-p)*subfun2(p,theta)) + subfun3(p,theta)/((1-p)^2 *
subfun2(p,theta)));
piHess = @(p,theta) [dPi2dp2(p,theta),dPi2dpdtheta(p,theta);dPi2dpdtheta(p,thet c
a),dPi2dtheta2(p,theta)];
f = @(x) -Pi(x(1),x(2));
fgrad = @(x) -PiGrad(x(1),x(2));
fHess = @(x) -piHess(x(1),x(2));
final = @(x) -f(x);
newtonstep = @(x) - inv(fHess(x)) * fgrad(x);
lambdasquared = @(x) -fgrad(x)' * newtonstep(x);

10

5 CODE 5.1 Newton’s Method Accuracy

pmax = @(theta) 1/((theta^2).*subfun1(theta));
w = @(p,theta) (-1/(theta*(1-p)))*log(subfun2(p,theta));
% constraints = [pConstraint,thetaConstraint]

theta0 = 0.5;
p0 = (1/2)*min(pmax(theta0),1);
x0 = [p0;theta0];
A = [1,0;-1,0;0,1;0,-1];
b=[1;0;thetabar;0];
x_builtin = fmincon(f,x0,A,b);
p_star_builtin = x_builtin(1);
theta_star_builtin = x_builtin(2);
f_star_builtin = f(x_builtin);
pi_star_builtin = -f(x_builtin);
max_inner_iterations = 15;
max_outer_iterations = 100;
epsilon = .00000001;
t0 = 1;
x = x0;
p0_vals = 0.01:.01:1;
theta0_vals = (thetabar/5):.01:(thetabar/2);
np0 = length(p0_vals);
ntheta0 = length(theta0_vals);
fvals = zeros(np0,ntheta0);
p_star_vals = zeros(np0,ntheta0);
theta_star_vals = zeros(np0,ntheta0);
for i = 1:np0

for j = 1:ntheta0
p0 = p0_vals(i);
theta0 = theta0_vals(j);
x0 = [p0;theta0];
x = x0;
if p0 < pmax(theta0)

fprintf("Starting Newton: p0=%.2f,theta0=%.2f\n",p0,theta0);

counter = 0;
while lambdasquared(x)/2 > epsilon && counter < max_outer_iterations

counter = counter + 1;
% fprintf("Newton iteration %d\n",counter);

dx = newtonstep(x);
t = t0;
xnew = x + t* dx;

11

5.1 Newton’s Method Accuracy 5 CODE

inner_counter = 0;
while f(xnew)> f(x) && inner_counter < max_inner_iterations

% fprintf("Using t=%.8f\n",t);

t = t/2;
xnew = t* dx;
inner_counter = inner_counter + 1;

end
x = xnew;

end
fvals(i,j) = f(x);
p_star_vals(i,j) = x(1);
theta_star_vals(i,j) = x(2);

else
disp("INFEASIBLE (p0,theta0)!!");
fvals(i,j) = inf;
p_star_vals(i,j) = inf;
theta_star_vals(i,j) = inf;

end
end

end
pivals = -fvals;
suboptimalities = pi_star_builtin - pivals;
X = repmat(p0_vals,ntheta0,1);
Y = repmat(theta0_vals(end:-1:1)',1,np0);
Z = fvals(:,end:-1:1)';
h = pcolor(X,Y,Z);
set(h, 'EdgeColor', 'none');

xlabel("p_0");
ylabel("$\tilde{\theta}_0$","interpreter", "latex");
title("Accurate Convergence Over Initial
($p_0,\tilde{\theta}_0$)","interpreter", "latex");
plot(arrayfun(pmax,theta0_vals),theta0_vals);
xlabel("Maximum Feasible p","interpreter","latex");
ylabel("$\tilde{\theta}$","interpreter", "latex");
title("Boundary of Implicit Domain ($p,\tilde{\theta}$)","interpreter",
"latex");

12

5 CODE 5.2 Newton’s Method with Logarithmic Barrier Functions Accuracy

5.2 Newton’s Method with Logarithmic Barrier Functions Accu-
racy

clear all; close all;
Lbar = 30;
thetabar = 6;
ggamma = 2.25;
c = 5;
H = 35;
ttt = 100;
subfun0 = @(theta) exp(-H/theta);
subfun1 = @(theta) 1-exp(-H/theta);
subfun2 = @(p,theta) 1-p*(theta^2)*(1-exp(-H/theta));
subfun3 = @(p,theta) p*H*exp(-H/theta) - 2*p*theta*(1-exp(-H/theta));
const1 = Lbar/thetabar;
Pi0 = @(p,theta) ttt*(const1*(ggamma*theta + (1/(1-p))*log(subfun2(p,theta)))
- c*((1-p)/p)) + log(theta) + log(thetabar-theta);
Pi = @(p,theta) ttt*(const1*(ggamma*theta + (1/(1-p))*log(subfun2(p,theta)))
- c*((1-p)/p)) + log(theta) + log(thetabar-theta) + log(p) + log(1-p);
dPidp = @(p,theta) ttt*(c*((1-p)/(p^2)) + c/p + const1 *(-((
(theta^2)*subfun1(theta))/((1-p)*(subfun2(p,theta)))) + (
(1/(1-p)^2) * log(subfun2(p,theta))))) +(1/p) - 1/(1-p);
dPidtheta = @(p,theta) ttt*(const1 * (ggamma + ((p*H*subfun0(theta)
-2*p*theta*subfun1(theta))/((1-p)*(subfun2(p,theta)))))) + (1/theta) -
1/(thetabar-theta);
PiGrad = @(p,theta) [dPidp(p,theta);dPidtheta(p,theta)];
dPi2dp2 =@(p,theta) ttt*(-2*c*(1-p)/(p^3) - 2*c/(p^2) + const1*((-theta^4 *
subfun1(theta))/((1-p)*subfun2(p,theta)^2) -(2*theta^2*subfun1(theta))/((1-p)^2
* subfun2(p,theta)) + 2*log(subfun2(p,theta))/((1-p)^3))) - (1/p^2) -
(1/(1-p)^2);
dPi2dtheta2 =@(p,theta)
ttt*(const1*(-subfun3(p,theta)^2/((1-p)*subfun2(p,theta)^2) +
(-2*p*subfun1(theta) + (p*(H^2)/(theta^2) + 2*p*H/theta)*subfun0(theta))
/((1-p)*subfun2(p,theta)))) - (1/theta^2) - (1/(thetabar - theta)^2);
dPi2dpdtheta =@(p,theta) ttt*(const1*(((theta^2) *
subfun1(theta)*subfun3(p,theta))/((1-p)*subfun2(p,theta)^2) +
(H*subfun0(theta))/((1-p)*subfun2(p,theta)) -
(2*theta*subfun1(theta))/((1-p)*subfun2(p,theta)) + subfun3(p,theta)/((1-p)^2 *
subfun2(p,theta))));
piHess = @(p,theta) [dPi2dp2(p,theta),dPi2dpdtheta(p,theta);dPi2dpdtheta(p,thet c
a),dPi2dtheta2(p,theta)];

13

5.2 Newton’s Method with Logarithmic Barrier Functions Accuracy 5 CODE

f = @(x) -Pi(x(1),x(2));
f0 = @(x) -Pi0(x(1),x(2));
fgrad = @(x) -PiGrad(x(1),x(2));
fHess = @(x) -piHess(x(1),x(2));
final = @(x) -f(x);
newtonstep = @(x) - inv(fHess(x)) * fgrad(x);
lambdasquared = @(x) -fgrad(x)' * newtonstep(x);
pmax = @(theta) 1/((theta^2).*subfun1(theta));
w = @(p,theta) (-1/(theta*(1-p)))*log(subfun2(p,theta));
theta0 = 0.5;
p0 = (1/2)*min(pmax(theta0),1);
x0 = [p0;theta0];
A = [1,0;-1,0;0,1;0,-1];
b=[1;0;thetabar;0];
x_builtin = fmincon(f0,x0,A,b);
p_star_builtin = x_builtin(1);
theta_star_builtin = x_builtin(2);
f_star_builtin = f(x_builtin);
pi_star_builtin = -f(x_builtin);
max_inner_iterations = 15;
max_outer_iterations = 100;
epsilon = .00000001;
t0 = 1;
x = x0;
p0_vals = 0.01:.01:1;
theta0_vals = (thetabar/5):.01:(thetabar/2);
np0 = length(p0_vals);
ntheta0 = length(theta0_vals);
fvals = zeros(np0,ntheta0);
p_star_vals = zeros(np0,ntheta0);
theta_star_vals = zeros(np0,ntheta0);
for i = 1:np0

for j = 1:ntheta0
p0 = p0_vals(i);
theta0 = theta0_vals(j);
x0 = [p0;theta0];
x = x0;

if p0 < pmax(theta0)
fprintf("Starting Newton: p0=%.2f,theta0=%.2f\n",p0,theta0);

14

5 CODE 5.2 Newton’s Method with Logarithmic Barrier Functions Accuracy

counter = 0;
while lambdasquared(x)/2 > epsilon && counter < max_outer_iterations

counter = counter + 1;
% fprintf("Newton iteration %d\n",counter);

dx = newtonstep(x);
t = t0;
xnew = x + t* dx;
inner_counter = 0;
while f(xnew)> f(x) && inner_counter < max_inner_iterations

% fprintf("Using t=%.8f\n",t);

t = t/2;
xnew = t* dx;
inner_counter = inner_counter + 1;

end
x = xnew;

end
fvals(i,j) = f(x);
p_star_vals(i,j) = x(1);
theta_star_vals(i,j) = x(2);

else
disp("INFEASIBLE (p0,theta0)!!");
fvals(i,j) = inf;
p_star_vals(i,j) = inf;
theta_star_vals(i,j) = inf;

end
end

end
pivals = -fvals;
suboptimalities = pi_star_builtin - pivals;
X = repmat(p0_vals,ntheta0,1);
Y = repmat(theta0_vals(end:-1:1)',1,np0);
Z = fvals(:,end:-1:1)';
Z = real(Z);
fig = figure('visible','off');

h = pcolor(X,Y,Z);
set(h, 'EdgeColor', 'none');

xlabel("p_0");
ylabel("$\tilde{\theta}_0$","interpreter", "latex");

15

5.3 Exhaustive Search Over One Variable with Newton’s Method 5 CODE

title("Accurate Convergence Over Initial
($p_0,\tilde{\theta}_0$)","interpreter", "latex");

5.3 Exhaustive Search Over One Variable with Newton’s Method

clear all; close all;
options = optimoptions('fmincon','Display','off');
Lbar = 30;
thetabar = 6;
ggamma = 2.25;
c = 5;
H = 35;

eepsilon = .01;

ttt = 100;

theta_vals = eepsilon:eepsilon:thetabar;
nprob = length(theta_vals);
fvals = zeros(1,nprob);
p_star_vals = zeros(1,nprob);
f_builtin_vals = zeros(1,nprob);
p_star_builtin_vals = zeros(1,nprob);

max_linesearch_iterations = 15;
max_outer_iterations = 100;

for i = 1:nprob
fprintf("ITERATION %d/%d\n",i,nprob);

theta = theta_vals(i);
subfun0 = exp(-H/theta);
subfun1 = 1-exp(-H/theta);
subfun2 = @(p) 1-p*(theta^2)*(1-exp(-H/theta));
subfun3 = @(p) p*H*exp(-H/theta) - 2*p*theta*(1-exp(-H/theta));
const1 = Lbar/thetabar;
Pi0 = @(p) const1*(ggamma*theta + (1/(1-p))*log(subfun2(p))) - c*((1-p)/p);
Pi = @(p) ttt*(const1*(ggamma*theta + (1/(1-p))*log(subfun2(p))) -
c*((1-p)/p)) + log(p) + log(1-p);

16

5 CODE 5.3 Exhaustive Search Over One Variable with Newton’s Method

dPidp = @(p) ttt*(c*((1-p)/(p^2)) + c/p + const1 *(-(((theta^2)*subfun1
)/((1-p)*(subfun2(p)))) + ((1/(1-p)^2) * log(subfun2(p))))) +
(1/p) - 1/(1-p);
PiGrad = @(p) [dPidp(p)];
dPi2dp2 =@(p) ttt*(-2*c*(1-p)/(p^3) - 2*c/(p^2) + const1*((-theta^4 *
subfun1)/((1-p)*subfun2(p)^2) -(2*theta^2*subfun1)/((1-p)^2 * subfun2(p)) +
2*log(subfun2(p))/((1-p)^3)))- (1/p^2) - (1/(1-p)^2);
piHess = @(p) [dPi2dp2(p)];

f = @(x) -Pi(x(1));
f0 = @(x) -Pi0(x(1));
fgrad = @(x) -PiGrad(x(1));
fHess = @(x) -piHess(x(1));
final = @(x) -f(x);
newtonstep = @(x) - inv(fHess(x)) * fgrad(x);
lambdasquared = @(x) -fgrad(x)' * newtonstep(x);

pmax = 1/((theta^2).*subfun1);
% w = @(p) (-1/(theta*(1-p)))*log(subfun2(p,theta));

p0 = (1/2)*min(pmax,1);
x0 = [p0];
A = [1;-1];
b=[1;0];
x_builtin = fmincon(f0,x0,A,b,[],[],[],[],[],options);
p_star_builtin = x_builtin(1);
f_star_builtin = f(x_builtin);

f_builtin_vals(i) = f_star_builtin;
p_star_builtin_vals(i) = p_star_builtin;

epsilon = .00000001;
t0 = 1;

x0 = [p0];
x = x0;

% fprintf("Starting Newton: p0=%.2f,theta=%.2f\n",p0,theta);

17

5.3 Exhaustive Search Over One Variable with Newton’s Method 5 CODE

counter = 0;
while lambdasquared(x)/2 > epsilon && counter < max_outer_iterations

counter = counter + 1;
% fprintf("Newton iteration %d\n",counter);

dx = newtonstep(x);
t = t0;
xnew = x + t* dx;
inner_counter = 0;
while f(xnew)> f(x) && inner_counter < max_linesearch_iterations

% fprintf("Using t=%.8f\n",t);

t = t/2;
xnew = t* dx;
inner_counter = inner_counter + 1;

end
x = xnew;

end

fvals(i) = f(x);
p_star_vals(i) = x;

end
not_bad_inds = find((real(fvals)>-10^6).*(real(p_star_vals)<=1)); %10-20 values

of theta seem to diverge to -inf!

fvals = fvals(not_bad_inds);
f_builtin_vals = f_builtin_vals(not_bad_inds);
p_star_vals = p_star_vals(not_bad_inds);
p_star_builtin_vals = p_star_builtin_vals(not_bad_inds);
theta_vals = theta_vals(not_bad_inds);

%%%% GLOBAL OPTIMUM BENCHMARK

subfun2_0 = @(p,theta) 1-p*(theta^2)*(1-exp(-H/theta));
Pi00 = @(p,theta) const1*(ggamma*theta + (1/(1-p))*log(subfun2_0(p,theta))) -
c*((1-p)/p);
f00 = @(x) -Pi00(x(1),x(2));
pmax0 = @(theta) 1/((theta^2).*subfun1);
theta0 = 0.5;
p0 = (1/2)*min(pmax0(theta0),1);
x0 = [p0;theta0];
A = [1,0;-1,0;0,1;0,-1];
b=[1;0;thetabar;0];

18

REFERENCES REFERENCES

x_global_opt_builtin = fmincon(f00,x0,A,b);
p_star_global_builtin = x_global_opt_builtin(1);
theta_star_global_builtin = x_global_opt_builtin(2);
f_star_builtin = f0(x_global_opt_builtin);
pi_star_builtin = -f0(x_global_opt_builtin);
%%%% GLOBAL OPTIMUM BENCHMARK

fig = figure('visible','off');

plot(theta_vals,p_star_builtin_vals);
hold on
plot(theta_vals,p_star_vals);
scatter([theta_star_global_builtin],[p_star_global_builtin],100,'filled');
legend("Built-in Optimization fmincon (over p)","Newton's Method with Barrier
(over p)","Global optimum (θ,p)","interpreter", "latex");
xlabel("$\tilde{\theta}$","interpreter", "latex");
ylabel("$p^*(\tilde{\theta})$","interpreter", "latex");
title("Optimal p Value for Each Fixed $\tilde{\theta}$","interpreter",
"latex");

plot(theta_vals,f_builtin_vals);
hold on
plot(theta_vals,fvals);
scatter([theta_star_global_builtin],[f_star_builtin],100,'filled');

legend("Built-in Optimization fmincon (over p)","Newton's Method with Barrier
(over p)","Global optimum (θ,p)","interpreter", "latex");
ylabel("$f^*(\tilde{\theta})$","interpreter", "latex");
xlabel("$\tilde{\theta}$","interpreter", "latex");
title("Optimal Objective Value for Each Fixed $\tilde{\theta}$","interpreter",
"latex");

References

[1] Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under risk.
Econometrica, 47(2):263–291, 1979.

[2] Richard Thaler and Sherwin Rosen. The value of saving a life: Evidence from the labor market. In
Household Production and Consumption, pages 265–302. National Bureau of Economic Research,
Inc, 1976.

19

REFERENCES REFERENCES

[3] A. Zielesny. From Curve Fitting to Machine Learning: An Illustrative Guide to Scientific
Data Analysis and Computational Intelligence. Intelligent Systems Reference Library. Springer
International Publishing, 2016.

20

	Introduction
	Model
	Worker Utility
	Probability of Worker Injury and Labor Supply
	Firm Profit
	Worker Type and Population
	Firm Profit Maximization

	Optimization
	Newton's Method
	Newton's Method with Logarithmic Barrier
	Exhaustive Search Over One Variable

	Conclusion
	Code
	Newton's Method Accuracy
	Newton's Method with Logarithmic Barrier Functions Accuracy
	Exhaustive Search Over One Variable with Newton's Method

