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Abstract

Object classification and scene segmentation are cornerstones of the computer vision community. While
there are an abundance of algorithms and strategies for image-based data, until recently, it was not known
how to process point-cloud data in its raw form for the aforementioned objectives. In this paper, we describe
PointNet, an novel deep learning architecture capable of object classification and scene segmentation
directly from raw point clouds. We discuss PointNet’s architecture design in detail as well as methods
researchers and data-scientists alternatively took to circumvent the challenges of raw point-clouds (section
2). We highlight and explore the optimization choices the authors applied to PointNet (section 3) and
directly evaluate its performance (and optimization hyperparameters) against a popular 3D convolutional
network architecture called VoxelNet (section 4). We compare the performance of PointNet to VoxelNet on
the ModelNet40 point-cloud dataset for the task of object classification.

1 Introduction

Researchers in computer vision and machine learning have developed robust algorithms [15], [5],
[18] for object classification and decision making [11], [8] through the use of convolutional learning
techniques on 2D image inputs. Until the work of PointNet [13] in 2017, the same could not be
said about 3-dimentional data involving point-clouds. Point clouds are inherently ’order-invariant’
data types, meaning the permutation of any or all point-members within a cloud does not affect
the information the cloud encompasses. Due to this unique characteristic, point cloud data does
not fit the standard image-based convolutional network architecture built for object identification
and scene segmentation.

While point clouds and images have inherently different data structures, the objectives for
both data types typically surround tasks such as object classification, part segmentation, and
scene segmentation. Traditionally, researchers would circumvent the challenges of point clouds
by transforming clouds to another data representation. One such technique was to ’voxelize’ the
point-cloud onto a 3D grid representation [21],[22], so that 3D convolutional learning techniques
could then be applied. This was not without drawbacks, as depending on the scale of the point
cloud, enormous (and sparse) 3d voxel grids would emerge. This also led to the challenge of
computing 3d convolution over potentially huge voxel-grids in a reasonable amount of time.
Works such as [10],[3] allieviated some of the challenges of sparse 3D convolution, but large
amounts of memory were still needed to store 3D voxel-grids.
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Another technique described in [12] was to preprocess a point cloud into multiple image
views, meaning the 3D point cloud would be transformed into a 2D image from several different
perspectives. This technique worked well for simple object classification tasks when a single
3D object point-cloud was isolated from its surrounding environment, but became non-trivial to
extend this technique to objectives such as scene or part segmentation. Furthermore, rendering
multiple image views from the point-cloud upended any hopes for ’real-time’ applicability. Hand-
crafted features were also proposed [2], [1] in attempts to construct methods which could deal
with the various sizes and rotations that basic shapes could take when captured as clouds. These
techniques used frequency domain transformations of the points captured in x-y-z space. However,
they did not generalize well to scenarios with multiple objects and were not considered for scene
or part segmentation. The deep learning community attempted to learn such spectral kernels
[16] from data directly to classify manifolds, or meshes. Non-isometric shapes were a large
shortcoming to the technique, as well as dealing with undesirable artifacts that were a biproduct
of transforming the clouds to a mesh.

A close methodological predecessor of PointNet is [7], which generates point-like samples
from image data and transforms them in a way similar to PointNet to achieve rotation-invariant
classifications. First, a “differentiable sampling” network learns to extract a grid of point-like pixel
clusters from a larger image, which on its own is not significantly different from other convolutional
image processing methods. Next, these point-like image samples are passed through a “spatial
transformer”, that re-orients and shears the sampled grid; including a spatial transformer in a
classification network is shown to impose a “canonical orientation” on the point-like samples and
thus on entire images (see Figure 5 below). A point cloud, on the other hand, is already in point
form, and can be directly passed into a spatial transformer; indeed, one of the central innovations
of [13] is to do exactly that to achieve rotation-invariant classification.

The motivation behind PointNet was to develop an architecture that could quickly process
large point clouds in their raw form, for the tasks of object classification as well as part and
scene segmentation. The novel contribution of this work was to both identify and understand
why a deep learning architecture could deal with order invariant data directly. In this paper we
showcase their network and how it is successfully applied to all the aforementioned objectives. We
summarize the novel features of the PointNet architecture in section 2. Furthermore we directly
compare the classification accuracy of PointNet against a VoxelNet 3D CNN with voxel-grid input,
using the ModelNet40 point-cloud dataset as a train/test source for both network architectures.
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2 PointNet Architecture

Figure 1: Color coding was added to the figure of the network architecture from the paper to reflect which components of
the architecture are inspired by what properties of the point set (red=unorderedness, green=local interactions,
orange=invariance to transformations).

The network architecture of the PointNet (Fig. 1) was created with the three main properties of
point clouds in mind. The point set in Rn, which is a subset of points from a Euclidean space, is
firstly unordered. This is unlike pixels in an image for example. The network therefore must be
invariant to permutations of the order in which input data is fed to it. The authors note that there
exist three strategies to create such invariance: 1) sort input into canonical order, 2) treat input
as a sequence but augment with permutations, or 3) create a symmetric function to aggregate
information from each point in a way that is invariant to order, which is the strategy pursued by
PointNet.

The authors comment that sorting is often not possible as it essentially requires defining a
geometry-preserving bijection between a high-dimension space and a 1d line. The sorting should
be stable with respect to perturbations of the points, which would require spatial proximity in
the high dimension space to be preserved by the bijection. Additionally for point sets, there are
often thousands of input elements, so sampling enough permutations of ordered data for training
a RNN may also be infeasible. A symmetric function is one that takes n vectors as input and
ouptuts the same vector regardless of the input order of the n vectors. Empirically, the authors
demonstrate that these first two strategies do not perform as well as their PointNet’s reliance on
a symmetric function. The idea behind the PointNet architecture is to approximate a function f
defined on a point set by applying a symmetric function on transformed input elements:

f (x1, ..., xn) ≈ g(h(x1), ..., h(xn)) (1)

where the xi ∈ Rd and h : Rd → RK, typically for some K � d. In the PointNet architecture, h is
approximated by a multi-layer perceptron (MLP) network and g is approximated by a composition
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of a single variable function and a max pooling function (red highlight in Fig. 1). The elementwise
maximum, i.e. max pooling along each component of a set of vectors, is a simple example of
a symmetric function. The authors tried others like elementwise summation and elementwise
averaging, but found empirically that max pooling worked best. By using different h, many f can
be learned that each capture different properties of the point set. This global signature ([ f1... fK]) is
then used as input to train a final MLP for classification. The authors additionally prove that the
neural network can approximate set functions ( f from above) that are continuous with respect
to the Hausdorff dH(., .) distance (the greatest of all the distances from a point in one set to the
closest point in the other set), formally:∣∣∣∣ f (S)− γ

(
MAXxi∈S{h(xi)}

)∣∣∣∣ < ε (2)

Here f : X → R,X = {S : S ⊆ [0, 1]mand|S| = n}. Additionally xi are the elements of S ordered
arbitrarily, γ is a continuous function, and MAX is the elementwise-maximum of n vectors. The
idea behind this proof is to consider the set S′ such that dH(S, S′) < δε so that | f (S)− f (S′)| < ε

for any such S′ given the continuity of f . The interval [0, 1] (taking a one dimensional case for
simplicity in notation) is split in K subintervals where K = d1/δεe and S′ is defined by taking
the points in S and mapping them to the left end of the subinterval in which they lie. Next
the function h(x) : R → RK = [h1(x); ...; hK(x)] is defined where each hj is a soft indicator of

x occupying interval j (i.e hj = e−d(x,[ j−1
K , j

K ]) where d is the point to interval distance function).
Now the occupancy of interval j by points in S can be found by taking the maximum over
{hj(x1), ..., hj(xn)}, denoted by the function vj(x1, ..., xn). Let v = [v1; ...; vk], a symmetric function
taking in n vectors from R and returning a value in {0, 1}K which describes the occupancy in each
interval. A function τ can then be defined to map this description of the occupancy back to the
unique points in S′. Letting γ(v) = f (τ(v)) from the continuity of f , |γ(v(x1, ..., xn))− f (S)| < ε

and an expression like Equation 2 is obtained by substituting back the elementwise maximum and
the function h.

Note in Figure 2 that voxelization can indeed be articulated as the “containment mapping” of
points from Rd to RK, where K denotes the number of voxels used to describe the point cloud
and h(xi) is a one-hot encoding of the voxel in which point i lies. In voxelization, the combination
of h(x1), . . . , h(xn) can be equivalently characterized as a componentwise sum (as in Figure 2), a
componentwise average, or a componentwise maximum; the authors of [13] found componentwise
maximum to yield the best performance for classification of these three symmetric combinations.
Note that the appropriate voxel resolution to represent different point clouds accurately and
efficiently will vary with the number and density of points, which is the primary limitation of any
voxelization method. Note that in the proof from [13] summarized in the previous paragraph, the
simplest case d = 1 is addressed, and “voxels” are equal-width subintervals of [0, 1].

The proof of the ability of PointNet to approximate an arbitrary continuous set function relies
on the “worst-case” reduction of voxelization to a symmetric function of a transformation of
each point in the point cloud. However, by instead allowing a multi-layer perceptron to map the
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n points in Rd K voxels Voxelized Image Vector ∈ RK

p1 = (x1, y1, z1)
p2 = (x2, y2, z2)

...
pn = (xn, yn, zn)



0
1
1
...
1
...
0


︸︷︷︸

f (p1,...,pn)=
g(h(p1),...,h(pn))

=



0
1
0
...
0
...
0


︸︷︷︸
h(p1)

+



0
0
1
...
0
...
0


︸︷︷︸
h(p2)

+ . . . +



0
0
0
...
1
...
0


︸︷︷︸
h(pn)

Figure 2: Voxelization is just one way to map x1, . . . , xn ∈ Rd to h(x1), . . . , h(xn) ∈ RK and combine them using a
symmetric function.

points from Rd → RK, backpropagation will ensure that a mapping will be used that yields good
classifications. By allowing for a more general mapping to a K-dimensional space, where K no
longer has to correspond to voxel resolution, PointNet is able to make classifications as good as
(often better than) the best voxelization-based schemes with far lower computational costs.

There are several practical consequences of this theoretical analysis. Since the neural network
approximates a continuous function, one take away is that small perturbations in the points
of the point cloud should result in similarly small changes in the output. Additionally from
the proof it is easy to see that the output of the neural network depends on the value of the K
dimensional v(x1, ..., xn) rather than the n dimensional {x1, ..., xn} that comes from the original
point cloud. In particular, a critical set of points of size less than or equal to K can be found (Letting
u = MAXxi∈S{h(xi)}, they can be found by choosing a point, cj, in X such that hj(cj) = uj for
each element of u) and so long as these critical points are included in the input, the output of the
network will not change. This means the network is robust to input data loss and can handle
more sparse representations of the point cloud. Conversely adding additional points (p ∈ X ) to
the input where hj(p) < uj∀j will also not change the output of the network. The authors call
the collection of all points, p, satisfying this condition the upper bound shape. This practically
means the network is robust to some input data noise as well. Examples of the critical points and
upper bound shape learned by PointNet for some objects is given in Figure 3. As also evident
by this analysis, the choice in the value of K, which the authors call the bottleneck size, does
significantly impact the performance of the network. They found empirically that increasing
K improved classification accuracy on the ModelNet40 dataset. Finally this theoretical analysis
unpacks the main idea behind PointNet, that is is to learn a new function h, that performs better
than the voxelization described.
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Figure 4: Above: representations from [13] of the action of a spatial transformer network on input. Below: a more
verbose representation highlighting that input samples are introduced to the network twice - first, to a MLP
that generates a constrained linear transformation; next, the generated linear transformation is applied to
those inputs.

Figure 3: Figure from the paper demonstrating the critical point set and upper bound shapes learned by PointNet for
ModelNet40 objects.

The next property of point sets is that there is interaction between points; they are not isolated
and their local structure matters. Considering local structure, in additional to global structure,
is especially important in segmentation tasks. The global features previously described are
concatenated with each of the points’ features (green highlight in Fig. 1). New point features are
extracted from this modified input and then these point features are used classify each point (both
steps are implemented with a MLP).

The final property of point sets is that they possess invariance under transformations. Rota-
tions or translations of all the points should not affect the results of classification or segmentation,
since the point clouds represent physical objects. One solution is to align all input to a canonical
space before extracting features. In PointNet an affine transformation (3× 3) matrix is predicted
by a mini-network called T-net from the input data and this transformation is then applied to the
input data (orange highlight in Fig. 1). The computational pattern by which the T-nets process
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inputs is visualized in Figure 4. The T-net mimics the larger PointNet architecture. It is composed
of a shared MLP on each point with layer output sizes 64, 128, and 1024, then max pooling across
points, and finally two fully connected layers with output sizes 512 and 256. PointNet also predicts
another affine transformation matrix to align the point features: the same T-net strategy predicts a
64× 64 matrix and adds the following regularization term to the loss function to constrain the
matrix predicted, A to be close to orthogonal and to stabilize optimization

Lreg = ||I − AAT ||2F (3)

where ||.||F denotes the Frobenius norm. Note that the 3 × 3 (affine) transformation matrix
returned by the first T-net corresponds to a shearing of the entire point cloud (a rotation and
linear deformation in 3 dimensions), which is then applied to each point in the point cloud. The
latter T-net has the exact same structure mathematically, but it acts on the output of a layer of the
network that happens to be 64-dimensional, and so it has a less geometric interpretation. The
geometrically interpretable effect of a low-dimensional spatial transformer is visualized in Figure
5.

→ →
Figure 5: Three still frames of an animation depicting a spatial transformer learning over several epochs to orient

handwritten digits from the “rotated MNIST” dataset from each class in a similar way (a “canonical
orientation” - not necessarily upright) to yield better classifications by subsequent multi-layer perceptron.
Images from [7].

The STN idea was first introduced in [7]. In section 3.2 they discuss at length the family
of transformations they consider that can be learned during backpropagation and applied to
two-dimensional points sampled from images as

Tθxi = A` ·

xi

yi

1

 .

For example, an “attention” transformation Tθ x defined by

Aθ =

[
s 0 tx

0 s ty

]
,

which corresponds to “cropping, translation, and isotropic scaling”, i.e. giving “attention” to
a non-rectangular, non-upright region of an image. The broader class of transformations they
consider in their model for image tasks utilizes all six entries of Aθ and allows for “cropping,
translation, rotation, scale, and skew to be applied to the input feature map.” They note that Tθ
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can in principle be more general than a linear transformation as long as it is differentiable with
respect to the parameters. Note that the “differentiable image sampling” technique used in [7]
finds a 2-dimensional point cloud-like representation of an image before transforming it; this idea
is the closest intellectual predecessor of PointNet [13].

Section 4 presents our empirical results using PointNet versus a voxel-based classification
network. The authors of [13] compared their best-performing network to several variants that
excluded some or all of: 1) the 3× 3 spatial-transformer, 2) the 64× 64 spatial transformer, and 3)
the regularizing loss-term Lreg to ensure a near-unitary transformation matrix. Their results in
Figure 6 demonstrate the relative value of these network features.

Figure 6: In [13], four network variants are compared including and excluding the two spatial transformers and the
regularization term Lreg for the 64× 64 spatial transformer. For this paper, an expanded comparison of
methods is provided in Figure 7.

3 Optimization Methods in PointNet Training

Training of the PointNet network requires solving an optimization problem, in particular minimiz-
ing a loss function. Here the loss function is defined as the sum of a softmax training loss and the
regularization term mentioned previously. The softmax function is a generalization of the logistic
function to multiple dimensions. In the final layer of PointNet the softmax function generates
the probability that an instance belongs to each class. The cross-entropy or log-loss, which is the
objective to be minimized, is then calculated between the actual class labels and the predicted
probabilities and summed over all instances in the training dataset. This loss function is a function
of the weights in the network architecture. Like most deep learning models, PointNet uses a
gradient-descent based algorithm to optimize its loss function and these gradients are computed
with the backpropagation algorithm, which takes advantage of the structure of neural networks,
calculating the gradient of the loss function with respect to each weight one layer at a time using
the chain rule. In particular, PointNet uses the Adam (adaptive moment estimation) optimizer
[9]. Adam is a variant of stochastic gradient descent, which are advantageous when gradient
calculations can be computationally intensive and some can potentially avoid local minima.

Stochastic gradient descent can be applied to minimizing any objective function of the form
Q(w) = 1

n ∑n
i=1 Qi(w) where the parameter w are the weights in the case of training a neural

network and the Qi correspond to loss function for the ith instance in the training dataset. In
typical stochastic gradient descent, the gradient of the loss function is approximated at each
iteration by computing the gradient based on a sample of the instances in the training data. The
size of this sample is referred to as the batch size and the authors of PointNet use a batch size of
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32 for training. At each iteration the samples are randomly shuffled and a new batch is selected
for approximating the gradient. In vanilla stochastic gradient descent the step-size (α) or "learning
rate" is fixed. This can be problematic because too large of a step size can cause instability and too
small of a step size can lead to slow convergence. There have been several extensions and variants
proposed based on stochastic gradient descent to address this. These include implicit stochastic
gradient descent (ISGD) [20] where the stochastic gradient is essentially evaluated at the next
iterate rather than the current one (which can be interpreted as a stochastic version of the proximal
algorithms we saw in class). Additionally there are variants that consider a momentum term
where the change in weights at each iteration is a linear combination of the stochastic gradient
calculated at that iteration and the change in weights from the previous iteration (∆w), where the
coefficient in front of ∆w is typically an exponential decay factor between 0 and 1. Finally there
are stochastic gradient methods where the step size is adaptive, such as AdaGrad, RMSProp, and
Adam, in which we will focus here on the last one since it is utilized in training PointNet.

In addition to calculating the stochastic gradient at each each iteration, the Adam algorithm
updates exponential moving average of the gradient (m) and the squared gradient (v) (i.e. the first
and second moments) at each iteration (the decay rates (β1, β2) of these moments are hyperparam-
eters of the algorithm for with the authors of Adam provide suggested good default values). The
updated weights at each iteration are then given by wt+1 = wt − α m̂√

v̂+ε
where ε is another hyper-

parameter for which the authors of Adam suggest a small scalar value. The authors of PointNet
utilized these default values in their TensorFlow implementation (β1 = 0.9, β2 = 0.99, ε = 10−8)
They utilize an initial learning rate, α, of 0.001 (the value suggested by the authors of Adam),
but additionally divide the learning rate by 2 every 20 epochs. Since the moving averages are
initialized at zero, m̂ and v̂ are the values of m and v with bias correction. Taking ε to zero, it can be
shown that the effective step size at each iteration is bounded above by either α(1− β1)/

√
(1− β2)

(depending on the values of β1 and β2) or α. The first case only emerges with extreme sparsity, i.e.
the gradient with respect to a parameter is now nonzero but has been zero at all prior timesteps.
In less sparse cases the bound will be smaller, demonstrating the adaptive behavior of Adam.

The authors of Adam provide an analysis of its convergence using the online learning frame-
work [23]. In this framework, algorithm performance is measured by minimization of the regret
defined as R(T) = ∑T

t=1[Qt(wt)−Qt(w∗)] where w∗ are the optimized weights. They provide a

proof that Adam has a O(
√

T) regret bound when the gradients are bounded, β2
1√
β2

< 1, and α is

decaying at a rate of t−1/2 for convex functions Qt, ft. The idea behind their proof comes from the
convexity of ft; since the ft are convex, ft(wt)− ft(w∗) ≤ gT

t (wt − w∗), where gt is the gradient
at iteration t. Therefore finding an upper bound on the regret is now a problem of finding an
upper bound on the quantity involving the gradient from the previous expression. This relies on

showing that ∑T
t=1

√
g2

t,i
t where gt,i is the ith element of the gradient at iteration t and ∑T

t=1
m̂2

t,i√
tv̂2

t,i

are bounded in their proof. Some recent works (such as in [14]) have provided examples of where
Adam can fail because the average regret does not go to zero as T → ∞, demonstrating the
importance in hyperparameter choices and suggesting modifications to Adam, such as placing
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essentially a longer term memory on past gradients (AMSGrad).
Utilizing a gradient-based optimization method requires calculation of a gradient. This

warrants some discussion since all the layers of PointNet include ReLU, the rectified linear
activation function. ReLU returns its input if it is greater than zero and returns zero if not
(i.e. f (x) = max(x, 0)). ReLU is thus a simple function that is not computationally intensive to
deal with, which can contribute to faster model training times, and can give sparser solutions.
Additionally traditional activation functions such as the sigmoid and tanh function can suffer
from the vanishing gradient problem in gradient-descent based optimization methods. Since the
sigmoid and tanh functions plateau over most values, the value of the gradient can often be near
zero. This means the gradient of the front layers of neural network will be a multiplication of
many small values through the backpropagation algorithm, and a vanishing gradient means the
weights will not update at each iteration. Of note though, ReLU can suffer from the opposite
problem of exploding gradients, which can make optimization unstable. In terms of calculating
the gradient, ReLU is not differentiable at zero, however from our discussion of subdifferentials in
class, gradient-based methods can simply pick a value between 0 and 1 at this point.

The PointNet network also includes a batch normalization in all layers except the last one. In
batch normalization [6] a standard normalization (subtraction of mean and dividing by variance)
is applied to the batch output of each layer before it is fed into the next layer. Empirically, batch
normalization has led to faster model training with more robustness to hyperparameter choices,
but it’s worth trying to understand why these advantages occur. Viewing each layer of a neural
network as a separate optimization problem, the inputs to this problem change at each step
depending on the output from previous layers. Hence the optimization problem is not fixed,
which the authors of the batch normalization paper term, internal covariate shift. The authors
hypothesize that this constant shifting of the optimization problem hampers convergence, thus
they propose batch normalization to alleviate this effect and contribute to faster convergence.
More recent analysis [19] has revealed that in many settings, batch normalization actually helps to
reduce the value of the gradient with respect to a layer’s output and smooth the objective function.
When optimizing a neural network using a gradient-based method, the internal covariate shift is
related to the difference in the values of the gradient before and after updating the weights, so
these two intuitions behind batch normalization’s performance are related. Additionally, there
are momentum versions of batch normalization, which is what is used by the authors in training
PointNet. In these variations, an average of past batch mean and variances is maintained and used
in computing the batch normalization, which is intended to make results more robust to batch
size. For the training of PointNet, the authors actually implement a rate that starts at 0.5 and then
gradually increases to 0.99.

Finally of note in the discussion of the optimization in training PointNet is the spatial trans-
former networks. These components do cause PointNet to be different than more standard
feed-forward architectures since the input essentially enters the network twice, once for learning
the affine transformation, and then again when the learned affine transformation is applied to
the input (a matrix multiplication). At first glance, it might appear that such a departure from
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standard architecture would cause problems for backpropagation, however this is not the case.
The application of the affine transformation can be simply thought of as another layer within
PointNet. The input to this layer is the affine transformation and the output to this layer is the
affine transformation applied to the fixed input data. Also it is obvious that the output of this
layer can be easily differentiated with respect to its input.

To conclude this section, we provide some demonstrations of the optimization methods and
network components utilized in the training of PointNet by performing classification of the MNIST
handwritten digit database. We implemented a simple network of three fully connected layers for
this example in TensorFlow with softmax classification loss. The layers contain batch normalization
and ReLU activation functions to match the PointNet implementation. First we wanted to explore
the convergence behavior of the Adam optimizer. From the convergence analysis presented
by the authors of Adam, we should be able to predict how changing the hyperparameters of
the optimization algorithm affects convergence. In 7A we plot the training accuracy (inversely
related to the loss function) versus the training epoch. We plot the results for Adam with the
default parameter values mentioned previously, and also utilized by the authors PointNet. In
addition we plot the results with an increased β1, decreased β2, and increased α. As predicted by
the theoretical analysis, these modifications all negatively impact the convergence of the Adam
optimizer. Next in 7B, we explored the effect of swapping Adam for a vanilla SGD with the
same learning rate, but fixed. The results demonstrate the clear advantage of a adaptive step
size, with Adam enjoying much faster convergence than Vanilla SGD (the authors of Adam have
also demonstrated the superior performance of Adam compared to other adaptive methods on
MNIST classification [9]). Additionally in 7B, keeping the default Adam optimizer, we explored
the effect of eliminating batch normalization and switching the ReLU activation function for a
sigmoid one. It should be explicitly stated here that the underlying optimization has changed
with these modifications, so the values for training accuracy obtained are not directly comparable.
However we can still see in this example that these modifications to the network architecture do
not greatly affect the stability nor speed of convergence of the optimization process here. Of note
though, the default Adam implementation does maintain the best accuracy on a separate testing
dataset, suggesting it might have learned a sparser solution providing for more generalizability.
The advantages of batch normalization and the ReLU activation function become more apparent in
more complex problems like PointNet, where the example used here is more trivial. Finally in 7C,
we utilized an implementation of the spatial transformer network with a CNN for classification
of the MNIST dataset [7] as a starting point to compare results with and without the spatial
transformer network. The spatial transformer creates a more complex optimization problem,
which is reflected by the more oscillatory plot of loss over epochs, but ultimately the network
with the spatial transformer performs slightly better on unseen data. Like mentioned previously,
PointNet stabilizes the optimization by adding a regularization term and the addition of the
spatial transformation network provides slightly improved classification results.
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Figure 7: The PointNet methods were reproduced for this paper in several variants. Here we compare the performance
of several PointNet variants including different learning rates, different SGD methods, and both including
and excluding the spatial transformer networks. This is an expansion on the comparison by the authors of
[13] in Figure 6.

4 PointNet and Experimental Results

In this section we highlight our findings of testing the point-cloud architecture against voxelization.
Particularly, we test the PointNet architecture against an architecture called ’Voxel-Net’ which
is a 3D convolutional neural network capable of performing classification over a 3D voxel-grid
input. Here we compare PointNet to Voxel-Net using the ModelNet40 dataset, which consists of
40 different classes of point-cloud objects.

As the PointNet architecture has been discussed at length in the previous sections, we summa-
rize the hyperparameters chosen to run the PointNet. An input size of 1024 points is subsampled
from an object’s point-cloud, standardizing the input dimention of the cloud to 1024× 3. Standard
stochastic gradient descent (SGD) with mini-batching of size 32 is chosen for use in conjunction
with the Adam optimizer. A learning rate of .001 is initially set which is set to decay at a rate
of .7 after every epoch. An epoch is declared as a single pass over all the training data divided
by the size of a mini-batch. Before a point cloud is fed to the network for training, the cloud is
rotated and jittered as well to augment the learning process. We see in Figure 8a an accuracy of
80% is achieved after 3800 mini-batches ( 18 epochs). The authors of PointNet note the testing
accuracy can achieve 89.2% on this ModelNet40. Figure 8b depicts the training loss. Note that after
3000 batches the loss is seen to become very flat, and it is unclear whether more hyperparameter
tuning would aid in further convergence. Also note that swapping the adam optimizer for a
momentum based optimizer was (empirically) not seen to have any large effects on training
accuracy or model loss. It should lastly be noted that model training was ended after 30 minutes
to prevent any overheating of our deep learning machinery, as temperatures reached near-critical
system tolerances. More elegant methods of saving and reloading parameters could have been
incorporated to overcome this problem but we leave this for future work.
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(a) PointNet: Test accuracy vs. num-
ber of training mini-batches. 80%
accuracy was achieved after approx-
imately 3800 minibatches (approx-
imately 30 minutes of training on
a NVIDIA GeForce 1060x GPU).
Graphic from Tensorboard.

(b) PointNet: training loss vs number of training mini-batches.

The performance of the PointNet architecture was compared to a 3D convolutional neural
network which classified voxelized representations of the point-clouds. This type of network is
typicalled dubbed a VoxelNet. First, all point clouds of the ModelNet40 dataset were transformed
into 3D voxel-grids. (It should be noted the memory requirements to do so is quite large.
400MB of point-clouds were converted to greater than 5GB of voxel-grids). A coarse voxelgrid of
32× 32× 32 voxels in the (x,y,z) was then chosen to uniformly discretize the point-cloud space
for 3D convolution. Note this would take much more preprocessing if the ModelNet40 had not
formatted the point-clouds appropriately to begin. Four layers of 3D convolution were used,
which had kernal sizes of (64,5,2), (64,3,1), (128,2,2), (128,2,2), respectively. For example, layer
one’s (64,5,2) can be read as 64 5x2 kernels, which are then moved across the 3D voxel-grid with
a stride of 2 (our chosen hyper-parameter). 3D max-pooling was used after the fourth layer to
aggregate latent information and reduce dimentionality. Lastly, two fully connected layers are
applied to transform the (flattened) latent information after layer 4. Finally a softmax is applied to
classify the 40 different objects appropriately. Note that no batch normalization or ReLu activation
was applied within the last fully connected layer, but both were applied in the first fully connected
layer.

(a) VoxelNet: Test accuracy vs. mini-
batch number (b) VoxelNet: loss vs. mini-batch number (c) VoxelNet: learning rate vs. mini-batch

number

As seen in Figure 9a, a testing accuracy of 85% was achieved using this strategy. We observe a
large increase in accuracy over the first 2000 mini-batches, which eventually levels out around the
16000th mini-batch. We should note that the voxelnet was trained for more batches than pointnet
only because computer overheating was (somewhat strangely) not observed in this case. The
learning rate was set to decrease at a near linear rate (Figure 9c) after every 512 mini-batches,
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resulting in a reasonably decreasing loss (Figure 9b).
We note that the main advantage of the PointNet over other methods (such as voxelization)

is that it does not require the initial data transformation the VoxelNet requires. This makes the
PointNet architecture a serious candidate for real time object classification using raw point-cloud
inputs, as it is comparably as accurate but sufficiently faster with respect to the alternate techniques
mentioned.

5 Conclusion

The effort in machine learning to classify image and video data produced the essential components
of the PointNet architecture: fully-connected multi-layer perceptrons to approximate classification
functions and convolutional layers to capture geometric relationships between features. These
fundamental techniques are known to produce good results both empirically and with a theoretical
basis in several “universal approximation” theorems.

Non-uniformity in input data has prompted a wide range of innovations. For image and
video data of different dimensions, replacing downsampling and other pre-processing with
network architectures that are scale-invariant has been an effort noted in several of the works cited
throughout. However, PointNet was the method proposed to process point data in a way that is
permutation-invariant regarding the inputs constituting a given point cloud.

PointNet builds directly on [7], which attempts to classify images in a way that is rotation-
invariant, and originates the “spatial transformer network” idea. Before this network learns and
applies an affine transformation to achieve transformation-invariance, it extracts point-like pixel
clusters sampled from the larger image, which are highly reminiscent of point data. This is
achieved via a “differentiable sampling” technique that is in practice simply a special case of a
convolutional layer, but it is clear that their work was an important precursor to the PointNet
method.

On one hand, the PointNet method is a natural extension of other rotation- and scale-invariant
classification methods to permutation-invariance for point cloud data, which has led to its
benchmark-setting on point cloud classification tasks both in accuracy and efficiency. Further-
more, the reduction of voxelization to max-pooling composed with a learned higher-dimensional
embedding gives a lower-bound on the performance of this technique for any point data. On
the other hand, for many real-time point-cloud classification tasks, there may be considerably
more structure than a general point cloud, and PointNet may not be appropriate. For example, a
LIDAR sensor on an autonomous vehicle or a facial identification module may generate a point
cloud, but one that is oriented somewhat uniformly, especially if many readings are taken over
time. For such a “mesh”, some of the features of the PointNet architecture may be irrelevant or
even disadvantageous. For example, the symmetric max pooling that makes PointNet invariant
to input permutation is technically a lossy function, and for a more regular data format and a
requiremenet of high precision (such as with facial ID) or implementability on extremely limited
hardware, it’s possible that PointNet is not appropriate.

14



Future work will likely find ways to take advantage of the innovations of PointNet. The
empirically observed classification improvement after applying a regularized spatial transformer
to abstract, 64-dimensional feature vectors demonstrates that a potentially wide range of natural
data (image, video, language) might benefit from this type of stabilization and regularization.
It’s also possible that other data that are generated or stored as a sequence but are intrinsically
unordered could benefit from the permutation-invariant methods of PointNet.
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