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1 Introduction

Facility location problems have been widely and closely studied throughout the 20th century in
theoretical and practical settings. Numerous reviews have been published. These problems tend
to have a solution space that grows exponentially in the number of desired facilities and to be
NP-hard. Some variants of facility location admit natural heuristic approximations. Here we focus
on one such variant, P -Median problems, and review solution methods.

In general, a facility location problem seeks to select from a finite set of facilities to optimally
serve demand sites. Usually the facilities and demand sites are distinct, though in some variants
they are from the same set. There is always a pairwise cost of each facility serving each demand
site, which often corresponds to the distance between the two physical entities, hence the “facility
location” framing. There may be a fixed cost associated with selecting each facility, and there may
be a limit on the number of allowable facilities. Finally, there may be a limit on the demand that
can be satisfied by any single facility, which is known as capacitated facility location, as opposed to
uncapacitated. Other concerns related to the demand-serving process may be captured in a “facility
location” context, such as costs and capacities associated with facility echelons, such as warehouses;
these variants allude to lot-sizing problems and are not the focus of this review.

In all cases, the problem seeks a many-to-one matching between facilities and demand sites.
The objective may be to minimize cost, maximize some other notion of utility, or to maximize
“coverage” of demand sites by the selected facilities.

When the number of facilities is fixed to P , the problem is referred to as a P -median problem,
which is articulated in Section 2 and is the focus of this report.

1.1 Other Reviews of Facility Location

Facility location problems have been studied widely. In fact, not only have countless papers been
published on the topic, but a sizeable body of reviews on the topic have been published.

ReVelle’s [13] from 1970 is possibly the earliest review on the topic; that author’s 2008 paper
[14] reviews the state of the art. Cornuejols, Fisher, and Nemhauser’s 1977 paper [3] describes
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heuristics, rigorously examines the performance of a greedy heuristic, and proposes a convincing
but nonstandard method to evaluate heuristic performance. Kariv and Hakimi’s 1979 [8] mostly
reviews and extends Hakimi’s seminal 1964 and 1965 papers [6] and [7]. Aikens’ 1985 review [2]
covers dynamic, multi-echelon, and multi-product variants of facility location problems, as well
as several side constraints, focusing on mathematical programming articulations. Hesse Owen
and Daskin’s 1998 review [12] covers several problem variants and discusses both mathematical
programming and queueing perspectives. Klose and Drexl’s 2005 review is almost a reprise of
Aikens’ [2] in that it articulates several complicating variants of facility location problems.

2 P -Median Problem

The P -median can be formulated as follows.

Minimize
x,y

∑
i∈I

∑
j∈J

djcijxij (1a)

s.t.
∑
i∈I

xij = 1 ∀ j ∈J (1b)

xij ≤ yi ∀ i ∈ I , j ∈J (1c)∑
i∈I

yi = P

0 ≤ xij ≤ 1 ∀ i ∈ I , j ∈J

yi ∈ {0, 1} ∀ i, j.

with the system parameters

p = number of facilities to locate

I = set of indices of candidate facility locations

J = set of demand indices

and with the decision variables defined as

xij = the fraction of the demand of customer j supplied from facility i

yi =

1 : facility is located at candidate site i

0 : otherwise.

The P -median problem formulated above as (1) can also be cast as an optimization problem
of a set function. In later sections, we will demonstrate properties of this set function that yield
performance guarantees for some heuristics over a wide range of problem variants.

First, define the objective as a function of X ⊆ I , the subset of facility indices indicating which
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facilities are selected:
z(J , X) =

∑
j∈J

dj min
i∈X
{cij}. (2)

Then the P -median problem (1) can be formulated as

Minimize
X⊆I

z(J , X) =
∑
j∈J

dj min
i∈X
{cij} (3)

s.t. |X| = P.

3 Proof of NP-Hardness

A full proof that the P -Median problem is NP-hard is given in Kariv and Hakimi’s 1979 reivew
[8]. They show, in fact, that the problem is NP-hard even if the graph representing facilities and
demand sites is

• planar

• has degree at most 3

• has edge weights (pairwise distances) all equal to 1

• have vertex weights (demands) of 1.

This very conservative reduction makes clear that even highly regular and limited special cases
elude efficient solutions. Note that the formulation in this review does not mention a graph, but
the natural translation is to set a distance cij equal to ∞ if an edge does not exist in the graph.
Most modern treatments eschew the graph setting entirely or lets pairwise distances denote shortest
path distances; the NP-hardness despite the special graph structure described above is evidence
that a graph structure does not yield significant computational difference. Their reduction proof is
outlined below.

Note that their definition of a P -median is a subset of nodes that minimizes the vertex-weighted
(i.e. demand-weighted) sum of distances between nodes in and out of the subset. In particular, the
“candidate facility locations” are the same set as the demand nodes, i.e. I = J . To translate an
instance of this form to an instance of the P -median facility location problem described in earlier
sections, in which demand nodes and candidate facility locations are separate sets, one need only
set distances between each pair of candidate locations equal to∞, ensuring that an optimal solution
will only serve demand nodes via candidate facility nodes.

Proof. First, note Garey and Jonshon’s 1979 proof in [5] that the dominating set problem is NP-
complete even on a planar graph of maximum degree 3 ([8] reproduces a proof of this lemma due
to Garey and Johnson, then goes on to their reduction to the P -median problem):
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Given a graph G(V, E) and a positive integer p, (1 < p < n), does there exist a subset V ∗p of
p or less vertices such that each vertex of G is either in V ∗p or is adjacent to a vertex of V ∗p .
Garey and Johnson have proved the following result [5]:
Lemma. Let G(V, E) be a planar graph of maximum vertex degree 3 and let p be an integer
1 < p < n. The problem of finding if there exists in G a dominating set of cardinality p is
NP-complete.

Finally, the reduction result: “The problem of finding a P -median is NP-hard even in the case
when the network is a planar graph of maximum vertex degree 3 all whose edges are of length 1
and all whose vertices have weight 1”:

Let G(V, E) be a planar graph of maximum vertex degree 3, all of whose edges are of length
1 and all of whose vertices have weight 1. We need only to show that the problem of whether
there exists a dominating set of cardinality p in G is polynomial time reducible to the problem
of finding a P -median of G. For, let VP be an arbitrary subset of P vertices of G. Then, by
the special structure of G, we have H(VP ) =

∑
v∈V

d(v, VP ) ≥ n − P . Thus, if there exists
any subset V ∗P for which H(V ∗P ) = n − P holds, then V ∗P is a P -median of G. On the other
hand, the equation H(V ∗P ) = n − P is satisfied if and only if d(v, V ∗P ) = 1 for each of the
n − P vertices not in V ∗P , namely if and only if V ∗P is a dominating set of cardinality P in G.
Therefore, there exists a dominating set of cardinality P in G if and only if the distance-sum
H(V ∗P ) of a P -median V ∗P of G is n − P . This shows that the problem of finding a dominating
set in G is polynomial time reducible to the problem of finding a P -median of G, and thus the
latter problem is NP-hard. Q.E.D.

4 Algorithms

The following algorithms are reproduced from [4]. Several of them are compared in Figure 6, which
is a table from [8], in which these algorithms were implemented. We did not reproduce the entire
battery of experiments, but implemented some of the algorithms and evaluated their performance.

4.1 LP Relaxation

Each of the algorithms to follow is compared to a MILP implemented exactly as (1) above in Gurobi.
Of course the problem is NP-hard, as proved in the previous section, which would wholly contradict
the correctness of a continuous relaxation of the MILP formulation. Nonetheless, Revelle’s 1970
article [13] claims

The formulation presented here makes use of linear programming to optimally locate central fa-
cilities on the road network. In the unlikely event of a non-integer solution, a branch-and-bound
scheme is recommended to resolve the problem with integers. With the linear programming
formulation, one can take any heuristic solution and tell whether it is optimal.

While LP relaxations are a common and nearly universal optimization strategy, it is extremely
bold to refer to “the unlikely event of a non-integer solution” in the context of an NP-hard problem.
No analytical probabalistic argument is made regarding the actual likelihood of fractional variables
nor on the performance of a thresholded LP relaxation solution. In 1970, even an LP formulation
was not necessarily tractible, and the authors offer a row-generation scheme, which to an extent
dates their priorities.
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I was curious whether numerical examples bore out their claim that integer solutions are likely
even without enforcement, and was surprised that it was often the case. Anecdotally, it seems that
very small problems (of the scale ReVelle was likely able to quickly solve on computers at the time),
integer solutions are quite common. On larger instances (both with more nodes in total, and more
nodes selected), they are extremely unlikely, as can be seen in Figure 1.

N=100,P=5
NON-INTEGER SOLUTION at trial 3/100. Nonzero values {0.5, 1.0}
NON-INTEGER SOLUTION at trial 11/100. Nonzero values {0.25, 0.5, 0.75}
NON-INTEGER SOLUTION at trial 16/100. Nonzero values {0.5, 1.0}
NON-INTEGER SOLUTION at trial 27/100. Nonzero values {0.5, 1.0}
NON-INTEGER SOLUTION at trial 44/100. Nonzero values {0.5, 1.0}
NON-INTEGER SOLUTION at trial 46/100. Nonzero values {0.5, 1.0}
NON-INTEGER SOLUTION at trial 77/100. Nonzero values {0.667, 1.0, 0.333}
NON-INTEGER SOLUTION at trial 90/100. Nonzero values {0.5, 1.0}
8/100 non-integer valued

N=1000,P=5
NON-INTEGER SOLUTION at trial 2/15. Nonzero values {0.125, 0.25, 0.188, 0.062,
0.312}
NON-INTEGER SOLUTION at trial 14/15. Nonzero values {0.333, 0.667}
2/5 non-integer valued

N=1000,P=50
NON-INTEGER SOLUTION at trial 0/5. Nonzero values {0.5, 1.0}
NON-INTEGER SOLUTION at trial 1/5. Nonzero values {0.5, 1.0}
NON-INTEGER SOLUTION at trial 3/5. Nonzero values {0.5, 1.0}
NON-INTEGER SOLUTION at trial 4/5. Nonzero values {0.5, 1.0}
4/5 non-integer valued

Figure 1: The output from three trials of randomly-generated instances of the P -median problem LP relax-
ation. On the smalles instance, which selects P = 5 out of N = 100 facilities, fewer than 10%
of solutions contain non-integer valued variables. On the largest instance, which selects P = 50
out of N = 1000 facilities, 80% of instances contained non-integer valued variables.

Note that ReVelle addresses the P -Median problem in which candidate facility locations and
demand nodes are the same (and selected nodes self-assign their demand), and that is the variant
that was implemented. To get a sense of whether reasonably central facilities were assigned nonzero
but non-integral demand (rather than spreading it out evenly) in instances with optimal non-integer
valued variables, plots were generated in which demand at each node is represented by the size of
the node. Some of those plots are included in Figure

5



Population-Weighted Distance-Minimizing P-Medians
N = 100, P = 5

Not Selected
Selected

Population-Weighted Distance-Minimizing P-Medians
N = 1000, P = 5

Not Selected
Selected

Figure 2: In both cases, the objective was to select 5 nodes as facilities to serve N = 100 demand nodes
on the left and N = 1000 demand nodes on the right. In both cases, the continuous relaxation
did not result in an integral solution, though many nodes were assigned zero demand, alluding
to the potential usefulness of this solution as a warm-start for any other heuristic method.

4.2 Greedy/Myopic Algorithm

1 Set X ← ∅ # X is the set of locations to be used

2 Find i∗ = arg mini∈I {z(J , X ∪ {i})}
3 Set X ← X ∪ {i∗}
4 If |X| < p, go to Step 2; else stop.

The greedy algorithm can perform quite poorly. Often the first “best” facility is far from
the centers of any possible clusters of demand. The numerical experiment depicted in Figure 3
demonstrate this algorithm performing quite poorly in randomized examples.
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solve_exact - P = 100, N = 200
solve_exact - P = 100, N = 600
solve_exact - P = 100, N = 1000
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Heuristics: solve_greedy
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Heuristics: solve_greedy
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Heuristic Performance - P Facilities, M Candidate Locations
Heuristics: solve_greedy

solve_greedy - P = 4, M = 100
solve_greedy - P = 4, M = 200
solve_greedy - P = 4, M = 300
solve_greedy - P = 10, M = 100
solve_greedy - P = 10, M = 200
solve_greedy - P = 10, M = 300
solve_greedy - P = 20, M = 100
solve_greedy - P = 20, M = 200
solve_greedy - P = 20, M = 300

solve_greedy - P = 40, M = 100
solve_greedy - P = 40, M = 200
solve_greedy - P = 40, M = 300
solve_greedy - P = 50, M = 100
solve_greedy - P = 50, M = 200
solve_greedy - P = 50, M = 300
solve_greedy - P = 100, M = 100
solve_greedy - P = 100, M = 200
solve_greedy - P = 100, M = 300

Figure 3: Average time-to-solve alongside performance ratio for the greedy heuristic. In the three panes,
the number of candidate locations M , the number of selected facilities P , and the nubmer of
demands N are varied as the other two are held constant. These are all representations of the
same trials and show how these three (the only three) system size parameters affect the difficulty
of solution and performance of this heuristic.7



Note in all the panes of Figure 3 that the time-to-solve for the greedy solution is less than half
that of the MILP solver (Gurobi). Also notice that the minimum objective obtained by the greedy
solution is as high as 12 times the optimal! The greedy solution is not bounded in its performance
ratio, as is discussed below and demonstrated in Figure 4.

Note in the second pane of Figure 3 that as the number of facilities increases, the time to
solve the P -Median problem using the greedy heuristic naturally increases linearly (more greedy
solutions need to be made). By contrast, solving using a branch-and-bound MILP solver can result
in reduced times for higher P . Indeed, the greatest combinatorial search space for this problem is
when P = M

2 , as there are
(
M
P

)
possible choices for facilities. The Gurobi solver used to generate

these plots does exhibit the expected bimodal behavior, but even over the average of many trials,
it does not reach its maximum at P = M

2 nor is it exactly bimodal.
Note in the third pane of Figure 3 that as the number of demands N increases for a fixed number

of facilities P out of M candidate locations, the performance improves.
In Figure 4, the greedy algorithm can at first equivalently select any of the candidate locations,

including the middle facility. If P = 2 facilities are to be selected, then the solution with objective
z = 0 (the left and right facilities) may not be chosen, meaning the ratio of the objective to the
best-possible objective is infinite.

Perhaps motivated in part by examples like this, Cornuejols, Fisher, and Nemhauser’s 1977 paper
[3] suggests evaluating heuristic performance with an alternative method. Rather than dividing
performance of the heuristic solution by the optimal solution, they propose to subtract from both
a “baseline” objective value, obtained using some obvious naive method, or even using a “worst
possible” solution. The example in Figure 4 may have an infinitely bad “performance ratio”, but
this obscures the fact that the greedy solution selected the worst possible solution and the triviality
of improvement.

It is notable that the local search exchange algorithm listed below in Section 4.3 would of course
obtain the optimal solution in this simple example.

c = 1c = 1d = 1 d = 1

Worst-Case P-Median Instance for Greedy Algorithm
Demand Node
Candidate Facility

Figure 4: A worst-case instance for selecting P = 2 facilities, in which the greedy algorithm performs
arbitrarily poorly.
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4.3 Local Search Heuristics

A natural extension of any heuristic solution is local search, which seeks improvement to a given
solution. The input to a local search is a solution, which here is a set X of selected facilities. Two
such local search heuristics are presented.

Neighborhood Search Algorithm

1 Input X # X is a set of P facility locations

2 Set Ni ← ∅, ∀ i ∈ X # Ni will be the set of demand nodes for which candidate site

i is the closest open facility

3 For j ∈J do

4 Set i∗ ← arg mini∈X{cij}
5 Set Ni∗ ← Ni∗ ∪ {j}
6 End For

7 Set Xnew ← ∅ # Xnew will be the set of new facility locations

8 For i ∈ X do

9 If |Ni| > 0 then

10 Find k∗ = arg mink∈Ni
z(Ni, {k})

11 Set Xnew ← Xnew ∪ {k∗}
12 End If

13 End For

14 If X 6= Xnew then set X ← Xnew and go to Step 2; else stop.

This neighborhood search algorithm addresses the variant of the P -median problem in which
the demand nodes and the candidate facility locations are the same set of nodes, and the demand
at each node is the same: the aim is to choose a set of central demand nodes to serve as facility
locations. A neighborhood consists of a candidate location along with all the demand nodes for
which that candidate location is the closest. On each iteration, within each neighborhood, the best
possible (most central) demand node is assigned to be the candidate location. Between iterations, as
the candidate locations change, so may the neighborhoods. The algorithm stops when it converges,
which it is guaranteed to do, as it improves its objective at each non-stationary iteration by a
non-vanishing amount.

According to [4], the neighborhood search variant of local search was first proposed in [10].

Exchange Algorithm

1 Input: X # X is a set of P facility locations

2 For i ∈ X do

3 For k ∈ I \X do

4 If z(J , X) > Z(J , X ∪ {k}\{i}) then

5 Set X ← X ∪ {k}\{i} and stop

6 End If

9



7 End For

8 End For

This algorithm is the most obvious and common local search heuristic: pairwise interchange.
This algorithm applies to the variant of the P -median problem defined in formula (1) (or (3) with
set notation), in which demand nodes and candidate facilities may be distinct, though this heuristic
may also apply to the variant in which they are the same. When the candidate facilities and demand
nodes are the same and demand is constant, this algorithm can be compared to the Neighborhood
Search Algorithm defined above: according to [4], the Exchange Algorithm tends to perform better.

As written above, the first possible improving interchange is made to the solution; however, it
is possible to make the best possible interchange. The Best Exchange Algorithm is written below.
It is also possible to define the exiting and entering facility location using any combination of first
and best, e.g. adding the candidate location that most improves the current solution as a P + 1-
Median, then removing the first node encountered whose removal results in an improvement over
the previous P -Median.

Best Exchange Algorithm

1 Input: X # X is a set of P facility locations

2 Set (i∗, k∗)← arg mini∈X,k∈I \X z(J , X ∪ {k}\{i}) # (i∗, k∗) is the best pair of exiting
and entering candidate locations

3 Set Xnew ← X ∪ {k∗}\{i∗}
4 If X 6= Xnew then set X ← Xnew and go to Step 2; else stop.

Note that the arg min in Step 2 of the best exchange algorithm somewhat obscures the |X| · |I |
comparisons required to generate the best pair of exiting and entering facilities, (i∗, k∗).

4.4 Lagrangian Heuristic

Daskin’s 2013 book [1] describes two different Lagrangian heuristic to solve the P -Median problem.
In one of these, they describe that when relaxing constraint (1c) (xij ≤ yi ∀ i, j), the problem
decomposes by facility. In the other, which we shall focus on, they relax the constraint (1b) requiring
that every demand be assigned a facility in formulation (1), to obtain the following problem:
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Maximize
λ≥0

Minimize
x,y

∑
i∈I

∑
j∈J

djcijxij +
∑
j∈J

λj(1−
∑
i∈I

xij) (4a)

=
∑
i∈I

∑
j∈J

(djcij − λj)xij +
∑
j∈J

λj (4b)

s.t. xij ≤ yi ∀ i ∈ I , j ∈J∑
i∈I

yi = P

0 ≤ xij ≤ 1 ∀ i ∈ I , j ∈J

yi ∈ {0, 1} ∀ i, j.

The Lagrangian formulation in (4) with objective (4b) can be solved by inspection. Note that
due to the relaxation, the demands do not have to be assigned exactly one facility. As a result, a
demand may be assigned no facilities or multiple facilities; i.e., for each j ∈J , the optimal value
of xij is

xij =

1 : yi = 1 and (djcij − λj) < 0

0 : otherwise

As a result, the impact on the objective of introducing facility i (i.e. yi = 1) does not depend on
yi′ for any other facility i′. So, the “value” of introducing facility i can be written

Vi =
∑
j∈J

min{0, djcij − λj} (5)

and the P candidate sites with the most negative Vi values are optimally selected.
Note that the relaxed constraint (1b) is technically an equality constraint, but can be equiva-

lently written as an inequality constraint in the primal problem
∑
i∈I xij ≥ 1 ∀ j ∈ J because

the minimized objective strictly increases in each xij , and no optimal solution with the inequality
constraint would permit

∑
i∈I xij > 1. That is, equality is implicit. This is notable because the

relaxation with dual terms of the form λj(
∑
i∈I xij − 1) (rather than λj(1 −

∑
i∈I xij)) would

exclusively yield trivial solutions in which xij = 0 ∀ i, j. Dualizing an inequality constraint yields a
natural lower bound; dualizing an equality constraint has a less obvious interpretation and in this
case ignorance of the implicit inequality could produce a useless relaxation.

As with all Lagrangian relaxations, the optimal value of the objective of problem (4) provides a
lower bound on the optimal value of the original problem (1). Furthermore, by using the facilities
selected in problem (4) (i.e. the values of yi) and assigning each demand to the nearest facility
(setting the xij optimally), a feasible solution is obtained, providing an upper bound to problem
(1).

Adjusting λ using subgradient descent between iterations, we can increase the lower bound. In
[1], they suggest the following procedure.
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1. Update the step size
tn = αn(UB −L n)∑

j∈J

(∑
i∈I xnij − 1

)2

where

tn = stepsize at nth iteration

αn = a constant on the nth iteration, with α1 generally set to 2

UB = best (smallest) upper bound on the P -median objective function (1a) so far

L n = objective function of the Lagrangian (4a) or (4b) on the nth iteration

xnij = optimal value of the xij variable (in the primal problem) on the nth iteration

2. Update the multipliers λ as

λn+1
j = max

{
0, λnj − tn

(∑
i∈I

xnij − 1
)}

Note that initializing λj = 0 ∀ i induces all xij = 0 and makes the “value” of each facility equivalent,
forcing a random selection for the first iteration.

Unfortunately, while this heuristic provides an upper and lower bound at each iteration, it is
not guaranteed to perform well. Indeed, on most randomly generated instances (with M ≈ 100
candidate locations, P ≈ 50 facilities, and N ≈ 1000 demands), the Lagrangian solution obtained
exactly the greedy solution on some iteration(s) but did no better. In Figure 5, the performance
of the Lagrangian heuristic is illustrated. The upper bounds obtained by finding a feasible solution
from a Lagrangian-optimal solution need not monotonically decrease, and indeed often do not
improve. The lower bounds obtained as solutions to the Lagrangian problem do by nature improve
at every iteration, but need not be tight, and are indeed often negative. Perhaps tuning of meta-
parameters could have improved the performance in this case.
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Figure 5: Performance of the Lagrangian heuristic proposed in [4] is often worse than the greedy heuristic.

Several of the algorithms in [4] were reproduced for this paper. The performance of the algo-
rithms obtained by the authors of [4] themselves are listed below in Figure 6.

Exchange Heuristic Neighborhood Search Lagrangian
Algorithm

Number of
Facilities Myopic Each

Iteration
Last

Iteration
Each

Iteration
Last

Iteration Value Iterations

1 25.795 25.795 25.795 25.795 25.795 25.795 4
2 17.000 17.000 17.000 17.000 17.000 17.000 15
3 14.276 13.503 13.503 14.276 14.276 13.178 95
4 11.659 10.719 10.184 11.659 11.659 10.184 90
5 9.227 8.341 7.805 8.497 8.497 7.805 85
6 7.173 6.389 5.854 6.443 6.443 5.854 73
7 5.222 4.038 4.038 4.492 4.038 4.038 99
8 3.600 2.870 2.870 3.195 3.600 2.870 14
9 2.303 1.978 1.978 2.027 2.303 1.978 13
10 1.135 1.135 1.135 1.135 1.135 1.135 16
11 0.324 0.324 0.324 0.324 0.324 0.324 21
12 0.000 0.000 0.000 0.000 0.000 0.000 1

Figure 6: Table 6.8 from [1] compares the performance of four techniques on a problem instance selecting
P out of 12 candidate locations, for P = 1, 2, . . . , 12.

4.5 Other Meta-Heuristic Approaches

Both [4] and [1] note that most heuristic or iterative approaches permit improvement using either
randomized or cache-based meta-heuristics. Randomized improvement strategies include

• Simulated Annealing, in which random modifications are introduced at each iteration to
encourage terminating on global rather than local minima. The rate or magnitude of the
random modifications begins high and is gradually lowered.
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• Concentration Algorithms, proposed in [15], utilizes several solutions from any randomized
algorithm (or the solutions from a suite of several different randomized or deterministic
algorithms) to build a concentration set of facilities that have been selected in at least one
solution, or in a sufficient number of iterations of a solution.

5 P -Median with Non-Negative Utility

As can be seen in Figure 3 and the discussion around Figure 4, the performance of the greedy
heuristic on the P -median problem can be arbitrarily bad. However, there is a variant of this
problem in which the performance of the greedy algorithm is guaranteed to be reasonable.
Note that much of this section is taken from my first-year DOTM paper.

5.1 Non-Negative Utility and Submodular Set Functions

Consider the set S ⊂ I of selected facilities, which can be defined

S = {i ∈ I |yi = 1}.

Then let gj(S) represent the utility or disutility to a demand site j ∈J of selecting set S. The
objective function (1a) of the P -median problem (1) can be framed in this way as follows:

Minimize
x,y

∑
i∈I

∑
j∈J

djcijxij =
∑
j∈J

gj(S) (6)

where gj(S) = mini∈S djcij . Modifying slightly from the operational consideration of reducing
demand-weighted distance, it is natural to consider gj(S) that represents utility rather than
disutility. In particular, suppose gj : 2I → R+

• is non-negative (indicated by → R+),

• depends only on the minimum distance beteen location j and a facility in S, and

• is decreasing in the minimum distance between a facility in S and location j,

then gj exhibits a property called submodularity.

Definition 1. A set function f : 2U → R+ is submodular if for any S ⊆ T ⊆ U and xinU\T ,

f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T ) (7)

Theorem 1. If the set functions gj : 2I → R+ are decreasing in the minimum distance between a
facility in S and a location j (and depend only on this distance), then they are submodular for all
j ∈J .

Proof. Let S ⊆ T ⊆ I , let x ∈ I \T and consider two cases:
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1. gj(S) = gj(T ).
In this case, gj(S ∪ {x}) = gj(T ∪ {x}) because the closest facility to demand j in T is no
closer than the closest facility to demand j in S; considering a potentially closer facility will
either improve both or neither. Then the two sides of definition (7) of submodular set
functions are equal.

2. gj(S ∪ {x}) < gj(T ).
Here there are three sub-cases

(a) gj(S ∪ {x}) = gj(S).
This implies there is a facility in S closer to demand j than x. Since S ⊆ T , this
implies gj(T ∪ {x}) = gj(T ) as well. In this case, the condition in (7) reades “0 ≥ 0”
and thus holds.

(b) gj(S ∪ {x}) > gj(S) and gj(T ∪ {x}) = gj(T ).
This implies there is a facility in T closer to demand j than facility x, but none of the
facilities in S are closer to demand j than facility x. In this case, the left-hand side of
condition (7) is gj(T ∪ {x})− gj(T ) = 0, and so the condition holds.

(c) gj(T ∪ {x}) > gj(T ).
This implies that facility x is closer to demand j than any of those in T . Since S ⊆ T ,
x is also necessarily closer than any in S, and gj(S ∪ {x}) > gj(S). In particular,
however, it means that

gj(T ∪ {x}) = gj({x}) = gj(S ∪ {x}).

Then, condition (7) holds by the following:

gj(T ) ≥ gj(S) (monotonicity)

⇓

gj({x})− gj(S) ≥ gj({x})− gj(T )

⇓

gj(S ∪ {x})− gj(S) ≥ gj(T ∪ {x})− gj(T ).

So, in all cases, condition (7) holds, and so the set function gj is submodular.

Corollary 1. The objective function of a variant of problem (1) in which utility to each demand
site has the conditions outlined earlier in this section (non-negativity, depends only on and
decreases in distance to closest facility), written as a submodular set function as in (6),
constitutes a submodular set function.
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Proof. The theorem 1 shows that the utility to each demand site is submodular, and this corollary
follows from the fact that a sum of submodular set functions is itself a submodular set
function.

Theorem 2. Every submodular set function for a set of size P permits
(
1− (1− 1

P )P
)

performance of a greedy algorithm. This bound is decreasing in P , but it is always at least as
strong as the limit

lim
P→∞

(
1− (1− 1

P
)P
)

= (1− 1
e

) ≈ 0.63.

Proof. The lecture notes [11] (or, again, my first-year DOTM paper) demonstrate this fact, which
follows directly from the definition of submodularity.

In summary, a greedy algorithm may perform arbitrarily poorly on the P -median problem, and
earlier randomized examples exhibited performance many times worse than the exact solution.
However, if the weighted distance minimization is replaced with a utility from the reasonably
broad category of non-negative functions decreasing in the distance to the closest facility for each
individual, then a greedy solution to this NP-hard problem attains at least 63% of an optimal
objective value.

6 Conclusion

We begin by defining the P -median problem and situating it within the context of other facility
location variants. We reproduce a proof of NP-hardness. We describe popular heuristic solution
methods: LP relaxation, greedy algorithms, pairwise interchange, and a Lagrangian relaxation; we
implement some of these for a close inspection of their performance. Finally, we note that when
the operational objective is replaced with an economic utility of a very broad and natural class, a
greedy heuristic has a strong performance guarantee.
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