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Abstract

We modify classical resource allocation problems by considering heterogeneity among individual beneficiaries

via feature-aware utility functions, with the goal of reducing unequal social welfare between subpopulations.

We discuss pitfalls of feature-aware optimization, including an exacerbation of between-group inequality,

and we provide examples motivating our idea of efficient and fair solutions. Finally, we propose an exact

method for obtaining solutions with a degree of fairness controlled by a single parameter, and we discuss an

approximate approach whose degree of fairness is attenuated in a similar way.

1 Introduction

Many optimization models assume the perspective

of a social planner, allocating resources so as to in-

crease the utility of individuals within a population.

Our running example will be facility location, which

could refer to establishment of transit stops or polling

places during an election. The social planner’s goal

is to maximize social welfare across a population of

individuals.

Framing the social planner’s task as an optimiza-

tion problem, a non-subjective proxy for utility might

suffice, such as proximity to nearest facility. Often,

however, individuals have intrinsic features that in-

fluence the utility they derive from a particular re-

source allocation. For example, a polling place one

mile away may be inaccessible to someone whose in-

come is low and is unlikely to own a car; on the other

hand, the utility an individual derives from a transit

stop might depend on their income, in that wealthier

individuals may be unlikely to use the stop.

Some objective terms may not reflect individuals’

utilities, but those that do can be considered together

via a social welfare function. A sum of individual

utilities is a common social welfare function, but this

choice relies on subtle philosophical assumptions, and

there are other natural but less-common strategies.

When individuals’ utilities are a function of both re-

sources allocated and individuals’ features, principled

consideration of the social welfare function may be

warranted.

It is natural to consider fairness in a social plan-

ning setting. A fairness-seeking goal might be equality

across the entire population, meaning low variation in

utility. In our setting, individuals have features that

are protected in a legal or ethical sense, and it is im-

portant to ensure that individuals in groups defined

by these features have comparable outcomes to oth-

ers.

Several problems are used as examples throughout,

but we start by defining the facility-location prob-

lem, in which to explore “fair” allocation of resources

within a heterogeneous population. Section 2 reviews

notions of fair algorithmic decision-making in the eco-
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nomics, machine-learning, and operations literature.

Section 3 provides a taxonomy of the adverse “fair”

decision-making and illustrates them through numer-

ical examples, motivating the fairness-inducing social

welfare strategies proposed in Section 4.

1.1 Utility Model

We consider a heterogeneous population of N indi-

viduals, whose individuals experience utility that is

a function of both their features and a resource allo-

cation. Suppose individual i has a feature vector θi,

is allocated resources ri ∈ R, and experiences utility

ui = f(θi, ri).

We are not overly concerned with computational

methods, and don’t impose restrictions on f until

Section 4. In this section we establish a running

example used throughout, though our treatment of

feature-aware individual utility and social welfare is

widely applicable.

In some cases an individual might experience

stochastic binary utility: a successful or unsuccess-

ful outcome, affected but not fully determined by

a social planner’s decisions. In this case, a utility

function could represent the probability of a success-

ful outcome:

ui = f(θi, ri)

= P (individual i has a successful outcome|θi, ri).

Here, an objective of the form
∑N
i=1 ui represents the

expected number of successful outcomes. A natural

for f is a logistic function.

Suppose individual i’s feature vector θi consists of

θi = (θUi , θ
P
i ), their unprotected and protected fea-

tures. For our running example, let θPi = gi ∈ {0, 1}
denote the group affiliation of individual i, i.e. the

protected features consist of a single binary cate-

gorical identifier denoting group affiliation. Sup-

pose there are nU unprotected features and θUi =

(θU1
i , . . . , θ

Unu
i ).

Define the following coefficient vectors:

θi = (θUi , θ
P
i )

= (θU1
i , . . . , θ

UnU
i , gi),

βU = (βU1 , . . . , β
U
nU ),

βP = (βP ),

βr = (βr),

and then utility can be written

ui = f(θi, ri)

=
1

1 + e−β
0−βUT θUi −βP

T θPi −βrri
(1)

= P (individual i has a successful outcome|θi, ri).

1.2 Feature-Agnostic Facility Loca-

tion

Our primary running example of social planning is

that of facility location, though our treatment of

feature-aware public resource allocation is applica-

ble to any setting considerate of individual utilities

determined by centralized decision-making.

Suppose there are N individuals and M potential

facilities of which m can be selected. To minimize the

sum of distances to facilities, the following optimiza-

tion problem suffices:

min

N∑
i=1

ri

s.t. ri ≥
M∑
j=1

dijxij , i = 1, . . . , N

M∑
j=1

xij = 1, i = 1, . . . , N

xij ≤ yj ∀ i = 1, . . . , N, j = 1, . . . ,M
M∑
j=1

yj ≤ m

xij ≥ 0, i = 1, . . . , N, j = 1, . . . ,M

yj ∈ {0, 1}.
(2)
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Here, yj represents whether facility j is selected; xij

represents whether individual i is assigned to facility

j; ri represents individual i’s distance to the closest

facility. In a general sense, ri represents the resource

allocation to individual i. Note that the xij variables

will naturally be binary.

1.3 Feature-Aware Facility Location

Now suppose individual i’s utility is ui = f(θi, ri)

where ri is the distance of individual i from their

nearest facility as in (2). Setting aside the form we

specified for f in Section 1.1, a more general problem

setting is the following:

max

N∑
i=1

ui

s.t. ui = f(θi, ri)

ri ≥ dijxij
M∑
j=1

xij = 1

xij ≤ yj ∀ i = 1, . . . , N, j = 1, . . . ,M
M∑
j=1

yj ≤ m

xij ≥ 0

yj ∈ {0, 1}.
(3)

In order for the ri in this problem to continue to

correspond to the distance from the nearest facility, it

is natural to assume ∂
∂rf(θ, r) ≤ 0 (a higher distance

yields less utility); in a setting in which ri represented

allocation of a utility-increasing resource, the oppo-

site would be true.

The feature-ignorant facility location formulation

(2) is equivalent to f(θi, ri) = −ri.

1.4 Social Welfare Function

Incorporating individual utilities into a social plan-

ner’s objective function is the central concern of this

work. In Sections 1.1, 1.2, and 1.3, individual utilities

are either deterministic or stochastic, and they either

ignore or incorporate exogenous individual features,

but in all cases individual utilities are added to create

a social welfare function. This natural formulation is

far from the only possibility; Section 2 reviews so-

cial welfare criteria in the literature, and Section 4

proposes a social welfare functional form promoting

α-fairness.

Social welfare functions can be characterized in

terms of their functional forms or implicitly via opti-

mality conditions. The running example of a facility-

location problem includes discrete decisions and the

notion of differential optimality conditions is not

well-defined. So, we introduce a second resource-

allocation setting with continuous decision variables.

Let u = (u1, . . . , uN ), and consider a “social welfare

function” that is weakly increasing in each ui:

max SW (u)

s.t. ui = f(ri)
N∑
i=1

ri = 1

ri ≥ 0.

(4)

where ri represents the resources allocated to indi-

vidual i.

We list three social welfare objectives from the lit-

erature (theoretically justified in [8] and [2]), ordered

from least-to-most “fairness-seeking”:

1. Fairness-neutral utilitarian objective, attributed

to the social philosopher Jeremy Bentham (“So-

cial Welfare Bentham”):

SWB(u) =

N∑
i=1

ui, (5)

which in (4) has the interior optimality condi-

tion f ′(ri) = f ′(rj) ∀ i, j. That is, individuals’

marginal utilities should be equal.

2. Fairness-favoring multiplicative objective, re-

ferred to as the Nash standard of comparison
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or Nash bargaining solution (“Social Welfare

Nash”):

SWN(u) =

N∏
i=1

ui, (6)

which clearly leads to the same optima as its

logarithm,

SWNlog(u) =

N∑
i=1

log(ui). (7)

Letting g(ri) = log(f(ri)) = log(ui), by the same

reasoning as in the utilitarian objective, an inte-

rior optimality condition is that

g′(ri) = g′(rj)

⇓
f ′(ri)

f(ri)
=
f ′(rj)

f(rj)
, (8)

which effectively prioritizes lower-utility individ-

uals by associating with the marginal utility a

weight inversely proportional to utility.

This solution maximizes the volume of the N -

dimensional rectangle (orthotope) with opposite

vertices at the origin and the end of the vector

u, and faces parallel to the axes.

3. Strongly fairness-inducing max-min objective,

attributed to the American philosopher John

Rawls (“Social Welfare Rawls”):

SWR(u) = min
i=1,...,N

ui. (9)

Optimizing SWR (maximin) will result in the

lowest worst-case inequality of the three objec-

tives listed, but it is indiscriminate between so-

lutions that provide additional benefit to higher-

utility individuals, and it may not always be ap-

propriate.

4. Weighting for fairness:

SWWeight(u) =

N∑
i=1

w(θi)ui. (10)

where w(θi) may simply associate a higher

weight priority to individuals whose type indi-

cates membership in a marginalized group (affir-

mative action), or may be a complicated function

of a multi-dimensional type that prioritizes indi-

viduals who are likely to have a low probability

of success.

Optimizing an appropriate social welfare ob-

jective can induce a range of notions of fair-

ness, some of which have compelling stochastic

interpretations. Recall the stochastic facility lo-

cation problem (3), where ui = f(θi, ri) =

P (individual i has a successful outcome|θi, ri). In

this case, the objective SWB(u) =
∑N
i=1 in (5) is

the expected number of successful outcomes. Alter-

natively the objective SWN(u) =
∏N
i=1 ui in (6) is

the probability that every individual has a successful

outcome.

Note that the logarithm in the Nash bargaining so-

lution (7) can be replaced with any strictly concave

increasing function to achieve a similar low-utility-

aversion, an analog to risk-aversion, effectively pri-

oritizing low-utility individuals. In fact, [11, 2], and

[1] note a family of low-utility-averse functions that

includes (5), (7), and (9):

SWξ(u) =


1

1−ξ
∑
i u

1−ξ
i : ξ ≥ 0, ξ 6= 1∑

i log(ui) : ξ = 1,
(11)

which equals the utilitarian (5) when ξ = 0, equals

(7) when ξ = 1, and is equal to the max-min (9) when

ξ →∞. A higher ξ is associated with a stronger sense

of “fairness”.

We propose the weighted social welfare function
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(10) for several reasons. For one, adding weights is

unlikely to require different computational methods,

and so this may provide a flexible fairness-inducing

strategy (as opposed to e.g. composing a logarithm

with utility as in the Nash bargaining solution (7)).

Adding weights eludes a compelling stochastic inter-

pretation like (6) in the preceding paragraphs, but

the optimality conditions in (8) can be reproduced

using an appropriate weighting function, and so pre-

sumably the same “fairness-seeking” results will fol-

low. We argue that this affirmative action-minded

weighting scheme can in fact be more flexible and

powerful in achieving a notion of fairness. This form

is the basis for our proposed fairness-seeking method

in Section 4.

2 Review of Fairness Criteria

In addition to the different notions of fairness pro-

moted by a choice of social welfare function, described

in Section 1.4, many indices have been proposed to

empirically measure fairness, along with strategies to

promote it in optimization. Of central concern is

always a balance of some notion of “accuracy” (or

“utilitarianism” or “efficiency”) with the notion “fair-

ness”. We will advocate for and against some strate-

gies that have been proposed for making this tradeoff,

we will explore what we consider adverse outcomes

in Section 3, and we will propose fairness-inducing

strategies in Section 4.

Most of the indices that follow can be utilized in

optimization in the following ways:

• as an objective function, with accuracy con-

strained to exceed some threshold,

• as a constraint, with accuracy as the stated ob-

jective,

• as a term in a constraint that also includes ac-

curacy,

• as one objective among several, at least one of

which measures accuracy, in a multi-objective

optimization problem.

The most important distinction between the fol-

lowing metrics is that some measure between-group

unfairness and others measure within-group unfair-

ness (or individual unfairness), as delineated in [10].

2.1 Between-Group Unfairness

In the following examples, we consider the case of a

population partitioned into two groups, where group

membership of individual i is denoted by indicator

variable gi, constituting the individual’s protected

features: θPi = gi.

A review of fair machine learning is provided in

[3], in which three notions of between-group fairness

are delineated: anti-classification where “protected

attributes—like race, gender, and their proxies—are

not explicitly used to make decisions”, classification

parity where “common measures of predictive perfor-

mance (e.g., false positive and false negative rates)

are equal across groups defined by the protected at-

tributes”, and calibration where “conditional on risk

estimates, outcomes are independent of protected at-

tributes”.

Some of the same authors as [3], in their preview

work [4], discuss the cost of fairness in a decision

process that utilizes exogenous risk scores. They

also note that in a decision problem, utility may be

fruitfully decomposed into an “immediate” and and

long-term utilities, reflecting that any “accuracy” or

“utilitarian” objective need not be the only concern

in resource allocation. They prove that the utility-

maximizing “fair” decision process is to use different

risk score thresholds for different subpopulations.

[12] treats classification parity as disparate mis-

treatment and proposes the covariance between indi-

vidual type and misclassification rate (e.g. false pos-

itive rate) as a reasonable proxy to minimize. This
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work is similar to ours in that it deals with decision-

making informed by an exogenous predictive model.

Analogous to their strategy addressing misclassifica-

tion parity, instead of enforcing ε-parity in resource

allocation, meaning

|E(f(θ, r)|g = 0)− E(f(θ, r|g = 1))| < ε,

one can instead limit covariance between group mem-

bership and outcome:

|Cov(f(θ, r), g)| < ε,

and this covariance can be written simply:

Cov(f(θ, r), g)) = E((g − g)(f(θ, r)− f))

= E((g − g)f(θ, r))− E(g − g)︸ ︷︷ ︸
=0

f

=
1

N

N∑
i=1

(gi − g)f(θi, ri).

This fairness-inducing objective is simple and intu-

itive, though we demonstrate drawbacks of objectives

like this in Section 3. An advantage of this covariance

is that it measures the correlation between outcome

and type even when g is not binary-categorical, but

is an arbitrary feature vector.

In [14], a learning algorithm is proposed that simul-

taneously aims to minimize between-group unfairness

and within-group unfairness by ensuring that individ-

uals in a protected group achieve similar outcomes

to the general population, and that individuals with

similar unprotected features receive similar outcomes,

articulated through what they term a Lipschitz con-

dition, proposed in their previous work [6].

In [6], rather than condensing inequality through-

out a population to a single index, between-group

equality is conceived of as a constraint on the distance

between utility distributions conditioned on feature

values. That is, statistical parity up to bias ε holds

for groups S and T with distributions µS and µT if

D(µS , µT ) ≤ ε, where D is a distance metric on the

space of probability distributions. They point out

that the Lipscitz condition is stronger than statisti-

cal parity.

In [6], their goal is to propose a fair affirmative

action scheme, which is similar in spirit to the goals

of this paper. Their intermediate representation of

individuals is also similar in spirit to our proposed

extension of automating the fairness-inducing weight-

assignment, as discussed in section 4.

2.2 Within-Group Unfairness

While between-group unfairness has prominent social

and legal motivations, within-group unfairness is an-

other important measure of equitable resource alloca-

tion, especially when groups are not well-defined or

“protected”. This notion is of unfairness is measured

by the Gini coefficient and the similar McCloone in-

dex, and is the subject of the common idea of “in-

equality”.

In some cases, within-group and between-group

fairness are coth considered as objectives. In [10], the

trade-off between the two is explored along with an

objective called a “generalized entropy index” that

captures both; in their context, reducing between-

group unfairness is proven to be guaranteed to in-

crease within-group unfairness. In [6] and [14], both

are minimized through two novel algorithmic ap-

proaches, the latter of which, like our approach, min-

imizes a linear combination of objectives with coef-

ficients governing the trade-off between fairness and

overall utility (in their case, accuracy).

In [1] (cited repeatedly by [8]), the authors also

propose the Nash standard of comparison (objectives

(6) and (7)), which allocates resources to individuals

who would experience the highest percent change in

utility, and favors the worst-off. The authors describe

the sum of logarithms objective as achieving a propor-
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tional fairness criterion only if the space of possible

utility distributions is convex; otherwise, more gener-

ally, this fairness criterion is satisfied by utility vector

u if and only if, for any other utility vector u′, the

“aggregate proportional change” is negative:

N∑
i=1

u′i − ui
ui

≤ 0 ∀ u′ ∈ U, (12)

where U represents the set of all feasible utility dis-

tributions.

In [11], the social welfare functions in the family

(11) (which includes the utilitarian objective (5) at

ξ = 0, the Nash objective (6) at ξ = 1, and the max-

min objective (9) as ξ →∞) are applied to a network

optimization problem to promote node equality, in-

terrogating whether a higher level of fairness, atten-

uated by the parameter ξ, necessarily implies a lower

global utility in terms of network throughput.

[2] is very close in spirit to this paper, as their cen-

tral goal is to balance fairness and efficiency through

multiple objectives. Their objectives are a utilitar-

ian social welfare function and a max-min utility,

while in section 4 we use a utilitarian solution and

a subpopulation-restricted utilitarian solution. Ulti-

mately, they are able to formulate as a MILP a “lexi-

max” approach that iteratively yields as much utility

as possible for the worst-off individual. We are con-

cerned with the utility of a disadvantaged subpopula-

tion and in fact advocate against always prioritizing

the lowest-utility individuals in Section 3.

2.3 Price of Fairness

In [1], the authors propose that the fairness-neutral

utilitarian objective (5) (with no fairness-inducing

constraints) as a baseline for a “price of fairness”.

That is, given an optimum with respect to a fairness-

neutral utilitarian objective u∗system and another op-

timum with respect to a fairness-inducing problem

formulation u∗fair, the price of fairness is defined as

the percentage decrease in utilitarian objective (5):

POF =
SWB(u∗system)− SWB(u∗fair)

SWB(u∗system)
, (13)

where SWB(u) =
∑N
i=1 ui. They axiomatically de-

fine a “fair” classifier as one that is Pareto efficient,

in that solutions from a fair classifier cannot be dom-

inated by another, and given this limitation, they can

bound the price of fairness in some settings. In con-

trast, [12] reviews observations that several notions

of fairness not be simultaneously satisfiable.

It is taken as a given in [6] and [14] that to achieve

between-group fairness, classifiers must, to a point,

systematically misclassify individuals from at least

one group. A “cost of fairness” is defined in [4]; a

“price of fairness” is defined in [1]; a “price of equity”

is defined in [8]; “Balancing Fairness and Efficiency”

is the subject of [2]. In [12], which focuses on linearly-

separating classifiers (thresholded logistic regression

and SVM), the rotation of a separating hyperplane to

capture more true- and false-positives from one group

concisely illustrates the trade-off between fairness and

accuracy.

As noted in [12], legal attacks have succeeded

against algorithmic decision-making aiming for pro-

portional outcomes between groups, on the grounds

that it encouraged “reverse-discrimination”. They

cite Ricci vs. Destefano, a 2009 case in which promot-

ing Black firefighters was deemed unconstitutional

due to their having scored lower on a standardized

test than other candidates; the ruling enforced a pol-

icy that promotions go to those scoring in the top

three of applicants, essentially outlawing any affirma-

tive action effort. This type of resistance to equity-

seeking algorithmic decision-making may make a fair-

ness constraint hard to justify in a setting in which al-

gorithmic decisions are immediately operationalized.

In some cases, enforcing a fairness constraint may
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result in an infeasible problem, or may degrade out-

comes over the population in an unacceptable way,

as explored in section 3. In these cases, and for a

flexible and interpretable menu of solutions, we pro-

pose a simple re-weighting of individual utilities ui in

section 4.

3 Principles of Adverse Deci-

sionmaking

The topic of fair algorithmic decision making has gar-

nered recent attention in relation to advances in (and

scrutiny of) machine learning. A common concern

is the tradeoff between predictive accuracy and fair-

ness [8, 1, 8, 4, 12, 14, 2, 7, 13]. In any context,

parties may be loathe to sacrifice a notion of “accu-

racy”, “efficiency” or “total utility”. Still, we feel

that when operational decisions, rather than predic-

tors, are being made algorithmically, the principles

of fair decision-making governing this tradeoff merit

increased attention.

Before defining and requiring our own notion of

Pareto efficiency in Section 4, we present several

types of bad decisions that can be made by applying

strategies for fair algorithmic decision-making from

machine-learning literature. Our goal is to show that

strategies proposed in the context of prediction may

not be appropriate in the context of operations.

In this section we cover the striking pitfalls that

can result from exclusively using a fairness-inducing

objective. While this is certainly not proposed in

any context in the literature, it explores the types of

decisions encouraged by avoiding unfairness via the

methods in the works above. These measures of fair-

ness might be a term in an objective, an objective

subjected to an accuracy constraint, one of multiple

objectives including another measuring accuracy, or a

constraint; these examples aim to help us understand

the implications of any of those methods.

The central problem of this work is how to quantify

social welfare from a collection of individual utilities

and features. Utility f(θ, r) can be any function in

(exogenous) individual features θ and (endogenous)

resource allocation r. We do not rely on concavity,

supermodularity, or the lack of either, in our prob-

lematization of fairness-seeking strategies. A wide

range of conditions can result in “optimally” allocat-

ing disproportionate resources to better-off individ-

uals, and “optimally” depriving others of zero-cost

utility. Some of the examples do not rely on features

at all, and only include one “type” of individual.

To illustrate these examples, however, we choose a

specific family of utility functions, where individual

utility is equated with “probability of success,” and

is given by the logistic model as in (1) with only one

exogenous feature θi, representing type, as well as the

endogenous ri:

P (success for individual i) = f(θi, ri)

=
1

1 + e−β0−βθθi−βrri
(14)

where βθ > 0 , meaning a higher type results in a

higher success rate. Usually ri represents a “distance

assignment” and βr < 0, meaning a lower distance to

the nearest selected facility results in a higher success

rate; in other examples, ri is a generalized “resource

allocation”, and βr > 0. The values of βθ, βr are

changed slightly for each example, while β0 = 0 is

used in all; in the spatial examples, this is equivalent

to the examples occurring over regions of different

scales.

3.1 Taxonomy of Adverse Decisions

We define the following types of bad decision-making:

1. Feature Ignorance. Like all work addressing

between-group inequality, we assert that “fair”

decisions in the context of different subpopula-
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tions requires acknowledgement of those subpop-

ulations. Further, we consider that any available

features, in addition to group affiliation, merit

inclusion in a fair optimization model. The stan-

dard of “anti-classification” in machine learn-

ing seeks for subgroup-conditioned expected out-

comes to be comparable, and our proposed meth-

ods for promoting fair between-group outcomes

in Section 4 centrally rely on individuals’ group

identities to do so.

2. Adverse Triage. Almost all optimization prob-

lems seek to make decisions with high marginal

utility (triage). We make a distinction be-

tween feature-triage and instance-triage. Fea-

ture triage refers to systematically prioritizing

resources to individuals with a given protected

feature. Instance triage refers to prioritizing re-

sources based on unprotected features, possibly

including or comprising aspects of the problem

instance such as location and graph connectiv-

ity. Each type of triage has a possible adverse

outcome.

(a) Unintended Triage. Being “feature-aware”

always creates the possibility of feature

triage, which can either help or hurt a

lower-utility subpopulation. It is possible

for subgroups to have simultaneously higher

utility and higher marginal utility than oth-

ers due to the role of their features in the

utility function. In this case, the feature-

aware utility function ends up prioritizing

the higher-utility subpopulation! Some so-

cial welfare functions avoid this by prior-

itizing low-utility individuals or promot-

ing equality in the distribution of utilities.

We believe the prioritization of one or an-

other subpopulation should be a separate,

socially-motivated decision by a social plan-

ner, rather than a by-product of systematic

differences in the marginal utilities of differ-

ent subgroups. In Section 4 we propose a

standard of commitment to serving a given

subpopulation.

(b) Anti-Triage. We consider between-group

fairness to be a first-order concern, and oth-

erwise generally advocate for a utilitarian

objective as a measure of social welfare.

Within-group equality is not the main goal

of the methods proposed in Section 4. Part

of the reason why this is not our focus is

that by overly prioritizing low-utility indi-

viduals, natural opportunities to serve indi-

viduals with high marginal utilities are lost,

and we term this phenomenon anti-triage.

For examples, if two individuals have utili-

ties er and 100er, the Nash bargaining so-

lution would be indifferent to allocating re-

sources to either individual; an appeal to

max-min equality would favor the former

and is literally insensitive to changes in the

other individuals’ utilities; and an appeal

to utilitarianism would favor the latter. In

contrast to unintended triage, which dis-

proportionately allocates resources to one

group due to the effect of their protected

features on their utility, anti-triage can oc-

cur with or without feature-awareness due

to a failure to apply instance triage. Rather

than prioritizing the lowest-utility individ-

uals, we advocate instead to prioritize sys-

tematically low-utility subpopulations, but

otherwise to respect utilitarian decisions,

and in Section 4 we provide tools to do so.

3. Self-Sabotage can result from some of the

between-group equality-inducing objectives fo-

cused on in the machine-learning literature. For
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example, in a discrete resource-allocation prob-

lem, it may be possible to meet the needs of both

high-utility and low-utility individuals, but, in

an effort to reduce the between-group inequal-

ity, the high-utility group will be denied available

resources or resources will be wasted, depending

on the problem formulation.

We strive for solutions on the efficient frontier

of population-wide social welfare and subpopula-

tion social welfare, measured by the same social

welfare function, but restricted to a subpopu-

lation with systematically or historically lower

utility. There are two identifiable and distinct

self-sabotage outcomes, both defined by devia-

tions from this frontier.

(a) Missed Opportunities. Denying high-utility

individuals available resources in order to

reduce the disparity between high- and low-

type individuals amounts to a missed op-

portunity. This would unnecessarily reduce

population-wide welfare in the name of re-

ducing inequality, moving adversely along

the corresponding axis of the efficient fron-

tier. This can characterize decision-making

even in a feature-ignorant setting.

(b) Spiteful Allocation. Possibly more concern-

ing is if many high-utility individuals and

some low-utility individuals could benefit

from a decision that is avoided in the name

of reducing inequality: this we term spite-

ful allocation or cutting off the nose to spite

the face. This moves adversely along both

axes of the efficient frontier.

These examples may seem to argue against using

these measures of fairness in general, but our inten-

tion is to highlight the differences between fair algo-

rithmic decision-making in machine-learning and that

in operations.

3.2 Adverse Continuous Resource Al-

location

Consider a variant of (4) with the social welfare func-

tion (5):

max

N∑
i=1

ui

s.t. ui = f(θi, ri)
N∑
i=1

ri = 1

ri ≥ 0.

(15)

3.2.1 Unintended Triage in Continuous Re-

source Allocation

The formulation (15) can encourage the exogenously

lower-utility individuals to optimally receive no re-

sources, as in the first pane of Figure 1. This is

an example of unintended triage: individuals with

a high marginal utility due to a protected feature are

favored, and when those individuals also have high

overall utility, feature-awareness widens inequality.

The KKT optimality condition for an interior point

is ∂
∂ri
f(θi, ri) = ∂

∂rj
f(θj , rj) for all i and j. However,

the role of protected features in the utility function

results in globally higher marginal utility one sub-

group, and so the solution is on the boundary where

those individuals receive all the resources.

In the second pane of Figure 1, the Nash bargaining

solution (6) allocates more resources to the low-type

individual, which could be seen as a remedy. In later

examples, however, the Nash bargaining solution will

be seen to result in anti-triage.
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Figure 1: Maximizing the sum of utilities can result
in unintended triage.

3.3 Adverse Discrete Resource Allo-

cation

Unlike the continuous optimization problem in Sec-

tion 3.2, discrete optimization problems do not have

continuous domains, and thus do not have optimal-

ity conditions in terms of marginal utilities. Never-

theless, by visualizing discrete solutions along utility

curves, the same phenomena of bad decisionmaking

can be observed.

Several discrete optimization problems fall under

the general capacitated facility location framework.

max

N∑
i=1

M∑
j=1

fijxij +

M∑
j=1

cjyj

s.t.

M∑
j=1

xij = 1, i = 1, . . . , N

N∑
i=1

xij ≤ Kjyj , j = 1, . . . ,M

M∑
j=1

yj ≤ m

xij ≥ 0, i = 1, . . . , N,

j = 1, . . . ,M

yj ∈ {0, 1}, j = 1, . . . ,M.

(16)

While a number of discrete problems are special

cases of the capacitated facility location problem (16),

certainly not all discrete optimization problems are

part of this family. We will give examples from two

special cases:

• Maximum weighted bipartite matching, which is

a form of one-to-one matching, can also be writ-

ten in the form of (16), where Kj = 1 and cj = 0

for all j (facilities can only be matched to one in-

dividual and there is no facility-choice cost).

• The uncapacitated facility location problem (3),

the main setting of this paper, can also be writ-

ten in the form of (16), where fij represents the

utility to individual i when assigned to location

j (instead of ui = f(θi, ri)), the facility capac-

ity Kj = N or = ∞ for all j = 1, . . . ,M (all

facilities can accommodate arbitrarily many in-

dividuals), and facility cost cj = 0. In the fa-

cility location problem, utilities fij depend on

“distance to closest facility”, and so also satisfy

some correspondence to the triangle inequality,

which could be leveraged via the resulting set

submodularity (see Section 4.4.1) or other so-

lution methods; whereas in the general form of

(16), the fij need not satisfy any correspondence

11



to the triangle inequality. Facility location is a

one-to-many matching.

3.3.1 Unintended Triage in Maximum

Weighted Bipartite Matching

We consider a variant of bipartite matching in which

individual utility is equated with their “probability

of success” and is measured as:

P (Success) = f(θ, r) =
1

1 + e−β0−βθθ−βrr

where θ is the individual type and r represents the

value of the resource with which they are matched,

and is equal to zero if they are not matched. A

higher type and a higher-value resource match re-

sult in higher utility. Importantly, utility is not en-

tirely determined by the matching decision, and is

strictly positive, allowing an easy application of the

Nash social welfare function (7), which is illustrated

as a strategy that avoids unintended triage.

The first pane of Figure 2 demonstrates that the

utilitarian objective (5) can result in high-type indi-

viduals being allocated more higher-value resources,

and for lower-type individuals to be more likely to be

un-matched, in an example of unintended triage. In

constrast, the second pane demonstrates that social

welfare function (7) favors exogenously low-utility in-

dividuals, the effect of which dominates the (unin-

tended) feature-triage.
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Maximize P(Success)
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Facility (size = value)
Unused Edge
Unmatched Individual
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Figure 2: Utilitarian objective (5) results in exoge-
nously higher-utility individuals being allocated dis-
proportionately more resources, in an example of un-
intended triage. The equality-seeking social welfare
function (7), by contrast, matches more low-type in-
dividuals to the most valuable resources, and leaves
fewer of them un-matched.

3.3.2 Unintended Triage in Uncapacitated

Facility Location

Figure 3 issues an important warning regarding

feature-aware optimization. Maximizing the sum of

individuals’ probabilities of success, taking into ac-

count their features, may seem to promote fairness,

by in fact avoiding feature ignorance. In this model,
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however the low type individual gains less utility from

a close facility than the high type individual, and the

sum of utilities is highest when benefiting the high

type individual, in an example of unintended triage.

As in the continuous example, this issue is avoided,

favoring the individual whose protected features yield

a systematically lower utility, when maximizing the

sum of the logarithms of the utilities (maximizing the

Nash Standard of Comparison, as in [1, 8], and [2],

which is equivalent to maximizing their product).
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Figure 3: Incorporating individual features into
decision-making is essential to fair decision-making,
but can have exactly the opposite effect.
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3.3.3 Missed Opportunity in Uncapacitated

Facility Location with Covariance Min-

imization

In Figure 4, placing a facility at location B would

yield improvements for all individuals compared to

location A. However, the objective is minimizing co-

variance between type θ and f(θ, r), adapted from

[13, 12] and [10]. As the higher-type individual has

a much better outcome even at an inferior distance,

the more “fair” solution is to hurt this individual.

This is an example of missed opportunity, a variant

of self-sabotage.

A B

Bad Decisions: Facilities and Individuals
Minimum Cov(type,P(Success))

Individual type 0 Individual type 1 Selected Facility Omitted Facility
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Figure 4: Minimizing covariance encourages a deci-
sion whose utility for the two individuals is dominated
by the other option.

3.3.4 Spiteful Allocation in Uncapacitated

Facility Location with Covariance Min-

imization
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Minimum Cov(type,P(Success))
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Figure 5: Minimizing covariance encourages decisions
whose utility among individuals in both groups is
dominated by other options.

In figure 5, again minimizing covariance results in

self-sabotage, but in such a way that individuals from

both groups are worse-off. When one facility is se-

lected, it is facility A, which yields worse outcomes
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for all individuals than location B (including two low-

type individuals). When two facilities are selected,

location A is included even though it provides no

additional utility to any individuals simply because

the outcomes of the high-type individuals are already

much better than those of the low-type individuals,

and improving their outcomes further would increase

inequality.

3.3.5 Self-Sabotage in Uncapacitated Facil-

ity Location with Generalized Entropy

Minimization

A

B C

Bad Decisions: Facilities and Individuals
Minimum Generalized Entropy
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Figure 6: Minimizing generalized entropy encourages
choosing a facility that results in the least possible
average utility. This example has only one type of
individual.

Figure 6 illustrates that individual features and/or

group affiliation are not essential for encouraging self-

sabotage. The objective is to minimize the generalized

entropy function from [10]:

Eα(u) =
1

Nα(α− 1)

N∑
i=1

[(ui
u

)α
− 1
]

(17)

While the solution selecting the facility at location

A is not dominated by those at B or C, the identical

individuals near location B would outnumber the in-

dividual near location A and receive the same utility

were the facility at location B chosen. While general-

ized entropy was used to produce this plot, minimizes

any index that measures “inequality” would have this

effect. That is, a Gini coefficient or McCloone index

could produce this same phenomenon.

This example of self-sabotage is classified as a

missed opportunity, but it could also be viewed as

spiteful allocation in that the (majority of) individu-

als receiving lower-than-possible utility in the name

of “equality” are of the same group as the individual

near the facility at location A whose low utility is be-

ing avoided. This could be described as cutting off

the nose to spite the face.

3.3.6 Anti-Triage in Uncapacitated Facility

Location with Nash Bargaining Solu-

tion

In several examples in this section, the Nash bargain-

ing solution, via objective (7) (sum of log-utilities),

is presented as a remedy to unintentional triage, by

favoring low-utility individuals when they are the vic-

tims of feature-triage. Unfortunately, this can pre-

vent efficient instance triage, resulting in many fairly

low-utility individuals instead of just one individual

with utility that is even lower, but only by a small

amount.
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Figure 7: The Nash bargaining solution, which pri-
oritizes the lowest-utility individuals, places facilities
at locations A and C, rather than B and C, which
would result in a greater utilitarian objective. We
consider the over-investment in avoiding a low-utility
individual to be anti-triage, which is in this case a
failure to apply instance triage.

Failing to maximize the utilitarian objective is not

automatically an example of anti-triage: indeed, de-

creasing the utilitarian objective in order to benefit

a systematically lower-utility protected group is the

central focus of this paper. In contrast, devoting un-

due resources to an individual who has a low utility

in the utilitarian solution due to unprotected features,

such as their location within a problem instance, is an

example of anti-triage. We consider between-group

equality to be a first-order concern, but otherwise

advocate for a utilitarian objective rather than an

equality-promoting one.

4 Commitment to α-Fairness

If one group is systematically disadvantaged, regard-

less of equality-seeking methods applied, the outcome

of social planning will still likely fail to create equity.

We propose that inequity, whether or not it can be

equalized through decisionmaking, should motivate

efforts to serve lower-utility individuals and/or sub-

populations.

Instead of attempting to quantify and control a nu-

merical index of inequality between subpopulations,

we propose instead to focus on the fraction of effort

devoted to serving the various subpopulations, and

describe how to incorporate that into an objective.

We describe the sense in which this produces “effi-

cient” solutions with respect to utility in the popula-

tion overall and within the subgroup.

Finally, we propose a heuristic in the same spirit,

which finds approximate solutions while devoting a

specified fraction of effort to different subpopulations.

4.1 Efficient Solutions

In Section 3, we criticize the application of objectives

that:

• fail to usefully allocate available resources to

high-utility individuals to promote equality,

which can hurt either strictly the high-utility in-
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dividuals (missed opportunity) or both high- and

low-utility individuals (spiteful allocation);

• systematically triage resources away from a sub-

population identified by a protected feature (un-

intended triage); and

• fail to triage resources when appropriate (anti-

triage).

These adverse outcomes result from:

• maximizing feature-aware utility without priori-

tizing lower-utility subpopulations identified by

a protected feature

• optimizing a fairness index, such as

– minimizing covariance between protected

features and utility

– minimizing an inequality index such as gen-

eralized entropy or a Gini coefficient

• optimizing a low-utility-averse transformation of

individual utility, such as those in (11) for ξ > 0:

SWξ(u) =


1

1−ξ
∑
i u

1−ξ
i : ξ ≥ 0, ξ 6= 1∑

i log(ui) : ξ = 1,

which include

– the Nash standard of comparison (7) when

ξ = 1

– the max-min social welfare objective (9)

when ξ →∞

We propose that “fair and efficient” solutions lie on

the frontier of utility allocated to the entire popula-

tion vs. utility allocated to a subpopulation identified

by a protected feature.
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Figure 8: The frontier of optimal social welfare al-
located to the entire population vs. social welfare
allocated to the systematically lower-utility subpop-
ulation.

17



The three panes of Figure 5 can be thought of

as different strategies to promoting fairness. The

first pane (‘distance’) is the efficient frontier of the

feature-ignorant objective of minimizing the sum of

distances between facilities and individuals. The sec-

ond pane (‘prob’) is the efficient frontier of max-

imizing the sum of individuals’ utilities (ui =

f(θi, ri)P (Success|θi, ri)), which are a function of

their distance to the nearest facility as well as their

features (social welfare function (5)). The third pane

(‘logprob’) is the efficient frontier of maximizing the

sum of the logarithm of individuals’ utilities (social

welfare function (7)).

Section 3 advocates against striving for the frontier

in the first pane, as it is based on a feature-ignorant

objective. Section 3 also takes issue with the low-

utility-averse transformation applied to utility yield-

ing the frontier in the third pane, which may focus

too heavily on avoiding individuals with very low util-

ity, regardless of their protected features. Instead, we

advocate for seeking solutions on the efficient frontier

in the second pane.

As should be clear from Figure 8, the efficient solu-

tions with respect to one social welfare function may

not be efficient with respect to another. Some ef-

ficient solutions may coincide across objectives, but

this figure should illustrate that, for example, an effi-

cient Nash bargaining solution may be “dominated”

in the sense that some other solution yields a utili-

tarian improvement to both low-type individuals and

the population as a whole.

4.2 α-Fairness in a Social Welfare

Function

There is no a priori reason to prefer any of the so-

lutions along the efficient frontier illustrated in the

second pane of Figure 8, except perhaps the top-left

solution, which is the utilititarian objective, which

maximizes the sum of utilities across the entire pop-

ulation.

In the context of operations contracting, it is com-

mon for a parameter to denote an exogenous “nego-

tiating power” between parties when a continuum of

efficient contracts exists. Similarly, we consider the

choice of which efficient solution is most appropriate

to be an exogenous negotiation reflecting the urgency

of prioritizing a subpopulation’s welfare. In Section

4.3, we develop tools to inform this type of decisions.

Where along the frontier of “efficient” solutions a

social planner decides is most appropriate can be de-

scribed succinctly by a single parameter, which we

call α, corresponding to a “fraction of effort” allo-

cated to the subpopulation.

Consider a subpopulation defined by a binary pro-

tected feature θ = 0, known as “type-0” individuals;

for the rest of the population, known as “type-1”,

θ = 1. The α-fair utilitarian objective is defined as

follows:

Definition 1. α-Fair Utilitarian Objective

For α ∈ [0, 1) and a utility distribution u, the α-fair

utilitarian objective is

SWα(u) =
1 + α

2

∑
i:θi=0

ui +
(1− α)

2

∑
i:θi 6=0

ui. (18)

Definition 2. α-Fair Efficient Solution

For α ∈ [0, 1) and a utility distribution u, the α-fair

efficient solution is

u∗α = arg maxSWα(u). (19)

Note that the objective (18) is a form of the so-

cial welfare function (10) defined in Section 1.4. A

higher value of α ∈ [0, 1) allocates an arbitrarily high

priority to individuals in the type-0 subpopulation.

At α = 1, only the utility of type-0 individuals is

included, and the objective becomes insensitive to

changes in the utility of the rest of the population,

which is no longer guaranteed to yield a solution on
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the efficient frontier of solutions in Figure 9, as are

other values of α.
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Figure 9: The first pane depicts the frontier of effi-
cient solutions with respect to the social welfare of
the entire population and the type-0 subpopulation,
as well as the α-fair efficient solutions comprising the
convex hull of the region bounded by the frontier and
the origin. The second pane depicts the utility to
the two subpopulations at solutions optimizing the
α-Fair Utilitarian objective.

Theorem 1. Solutions maximizing the α-Fair Util-

itarian Objective are on the efficient frontier of sub-

population social welfare for all α ∈ [0, 1).

Proof. Consider the alternative, a solution u maxi-

mizing (18) for some α ∈ [0, 1) for which another so-

lution ũ exists that weakly improves both the social

welfare of the type-0 subpopulation as well as to the

type-1 subpopulation (or equivalently the population

overall). Substituting ũ then weakly improves both

terms 1+α
2

∑
i:θi=0 ui and (1−α)

2

∑
i:θi 6=0 ui in (18),

contradicting the optimality of u. �

Furthermore, many of the solutions on the efficient

frontier of subpopulation social welfare can be ob-

tained by maximizing the α-Fair Utilitarian Objec-

tive. In particular, all solutions on the convex hull

of the region bounded by the origin and the efficient

frontier can be found in this way. Note that the effi-

cient frontier is not convex, and indeed not all efficient

solutions can be found in this way, as can be seen in

Figure 9. This convex hull limits the severity of the

trade-off between subpopulation utilities to some ex-

tent, and we believe that this technique’s simplicity

outweighs its lack of comprehensiveness with respect

to attaining every possible efficient solution.

Theorem 2. All solutions on the convex hull of the

efficient frontier of subpopulation social welfare are

obtained by maximizing the α-Fair Utilitarian Objec-

tive SWα for some α ∈ [0, 1).

Proof. Consider the solutions on the convex hull

of the region bounded by the efficient frontier and

the origin, and refer to the summed utility to the

“low-utility” subpopulation as L, and the summed

population-wide utility as A (“all others”), denoted

by u = (L,A), with A∗ and L∗ being the extreme val-

ues attainable via a utilitarian objective and an objec-

tive that fully prioritizes the utility of the low-utility

subpopulation. For simplicity, consider a slight vari-

ant of SWα, called ˜SWα that simply maximizes a

convex combination of L and A (the result still holds

for SWα). This variant of the α-fair utilitarian ob-

jective is then simply written

˜SWα(u) = αL+ (1− α)A.

We prove the theorem by induction. To start, ˜SW 0
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and a sequence of ˜SWα with α→ 1 will clearly attain

the extreme solutions A∗ and L∗, respectively. We

then show that any solution that is “between” two

solutions on this convex hull that are both attainable

for values of α ∈ [0, 1) is also attainable for some

value of α ∈ [0, 1).

Consider three consecutive points on the convex

hull of the efficient frontier of subpopulation-wide and

population-wide social welfare:

u1 =

L1

A1

 ,
u2 =

L2

A2

 ,
u3 =

A3

L3

 .
Say these solutions run from “top-left” to “bottom-

right” of the frontier (visualized in the first pane of

Figure 9), and as they are efficient, none dominates

any other:

L1 ≤ L2 ≤ L3

A1 ≥ A2 ≥ A3.

Furthermore, as these solutions are on the convex hull

of the region bounded by this frontier and the origin,

it must be the case that u2 is on the “top-right” side

of the line segment connecting u1 and u3.

Without loss of generality, assume L1 = 0 = A3 (or

consider applying the orientation-preserving transla-

tion L 7→ L−L1, A 7→ A−A3). In this case, u2 being

to the “top-right” of the segment connecting u1 and

u3 simply means:

A2 ≥
A1

L3
L2 +A1

Now, for α = A1

A1+L3
(and (1 − α) = L3

A1+L3
), we

evaluate the variant of the α-fair utilitarian objective

at u1, u2, and u3 to yield

˜SWα(u1) = α L1︸︷︷︸
=0

+(1− α)A1

=
A1L3

A1 + L3

˜SWα(u3) = αL3 + (1− α) A3︸︷︷︸
=0

=
A1L3

A1 + L3

˜SWα(u2) = αL2 + (1− α)A2

=
A1L2

A1 + L3
+

L3

A1 + L3
A2

≥ A1L2

A1 + L3
+

L3

A1 + L3

[
A1

L3
L2 +A1

]
=

2A1L2

A1 + L3︸ ︷︷ ︸
≥0

+
A1L3

A1 + L3︸ ︷︷ ︸
= ˜SWα(u1)= ˜SWα(u3)

Since ˜SWα (for α = A1

A1+L3
) attains a greater value

at u2 than u1 or u3 , u2 is the maximizer of SWα.

By induction, all solutions along the convex hull

of the efficient frontier, ranging between the solution

that achieves L∗ and the one that achieves A∗, are

attained by maximizing ˜SWα for some α ∈ [0, 1).

As noted earlier, ˜SWα is simply a relabeling of

SWα to simplify notation during the proof, and the

result holds for SWα as well. �

Finally, we define α-fairness.

Definition 3. α-Fairness

For α ∈ [0, 1), let Lα be the utility to the (low-utility)

protected subpopulation in the α-fair efficient solution

(which maximizes SWα). An α-fair solution is any

solution that achieves at least Lα utility for the pro-

tected subpopulation.

For all experiments presented in this paper, so-

lutions to discrete optimization problems were ei-

ther found through exhaustive search or using COIN-

OR’s BONMIN mixed-integer nonlinear program-
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ming (MINLP) solver, neither of which addresses the

NP-hardness of these problems in general.

We do not propose any algorithm for attaining α-

fair solutions, which is in general as computationally

hard as finding α-fair efficient solutions. In Section

4.4.1, however, we present an algorithm that is guar-

anteed to attain a fraction of Lα, and which shares

the spirit of α-fairness, in that it devotes a fraction

of effort to the protected subpopulation, subject to

the social planner’s social or ethical prioritization of

benefiting that subpopulation.

4.3 Choosing α

We propose an extension of this work dedicated to

automating the process of choosing an α that reduces

between-group inequality without inverting and then

exacerbating the between-group inequality. For now,

we explore the effect of changing α on the population-

and subpopulation-wide distribution of utilities in a

facility location setting.

In the social context we wish to bear in mind, there

are subpopulations whose systematically lower util-

ity is likely to persist regardless of the effort of the

social planner. The lower utility could be caused

by a learned coefficient in a stochastic utility func-

tion (such as (1)) that predicts worse outcomes for

members of that group, or due to some unprotected

features that result in systematically worse outcomes

(such as location).

Whatever the reason, one subpopulation is identi-

fied as being likely to suffer lower utilities than an-

other, or than the population as a whole. A social

planner elects to maximize the α-fair utilitarian ob-

jective SWα to find an α-fair efficient solution.

What effect is this likely to have on the distribution

of utilities among the population and among the pro-

tected subpopulation? How do the outcomes compare

to a strictly utilitarian objective, a Nash bargaining

solution, a feature-ignorant solution, or other α-fair

efficient solutions?

We conducted numerical experiments to explore

this question, maximizing several objectives over

many trials of an uncapacitated facility location prob-

lem. In Figure 10, we plot the empirical CDF of out-

comes for the low-utility subpopulation (marked θ0)

and the high-utility subpopulation (marked θ1).

We also observed the result of objectives similar to

the α-fair utilitarian objective, with α and (1 − α)

weights, but replacing utility with distance to closest

facility (as in the feature-ignorant objective) and log

utility (as in the Nash bargaining solution).
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prob_ 0 0 0.06259982 0.36302857 0.02929276 0.00304955 0.00000000

prob_ 0 1 0.06101119 0.48019961

distance_ 0 0 0.06213067 0.36331820 0.02904699 0.00000000 0.00047889

distance_ 0 1 0.06110453 0.47950617

logprob_ 0 0 0.06184875 0.36370325 0.02869393 0.00083927 0.00124044

logprob_ 0 1 0.06148988 0.47847896

logprob_ 0.9 0 0.06013483 0.36745834 0.02511070 0.02679034 0.00933165

logprob_ 0.9 1 0.06640188 0.46790114

distance_ 0.9 0 0.06008569 0.36778947 0.02496859 0.02788092 0.00922040

distance_ 0.9 1 0.06658542 0.46766381

logprob_ 0.99 0 0.06009510 0.36759290 0.02466406 0.03369481 0.01113122

logprob_ 0.99 1 0.06729249 0.46624913

prob_ 0.9 0 0.06038334 0.36822780 0.02453269 0.03735029 0.01024849

prob_ 0.9 1 0.06745474 0.46635857

distance_ 0.99 0 0.06005698 0.36791543 0.02443108 0.03628836 0.01147139

distance_ 0.99 1 0.06765022 0.46563975

prob_ 0.99 0 0.06039839 0.36829301 0.02390823 0.04745534 0.01305607

prob_ 0.99 1 0.06868498 0.46392592

Figure 10: Empirical CDF of utility and feature-
ignorant distance from nearest facility across the pop-
ulation
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The motivating setting described in the beginning

of this section is when the welfare of the low-utility

subpopulation is so much lower than that of the high-

utility subpopulation that no amount of fairness can

“overshoot” between-group equality, and this experi-

ment was tuned as such. As can be seen in Figure 10,

the outcomes for the subpopulation with θ = 1 are

significantly better than those of the subpopulation

with θ = 0 even after optimizing all of the fairness-

seeking objectives: the empirical distributions of util-

ity nearly stochastically dominate.

What is notable in Figure 10 is that every one of the

“fairness-” or “equality-seeking” objectives ends up

inducing a worse distance distribution for the high-

utility subpopulation than for the low-utility subpop-

ulation. That is, while utility is determined by both

resource allocation (ri) and type (θi), any feature-

aware equality-seeking objective will identify the need

to allocate more resources to the population with sys-

tematically lower utilities; any fairness-seeking objec-

tive, like SWα or a similarly weighted version of the

Nash bargaining solution objective (7), will also pri-

oritize allocating resources for this subpopulation.

As should be expected, a high value of α results

in utility distributions that are closer together. The

objectives are ordered in the legend and the table ac-

cording their performance with respect to minimiz-

ing the covariance between type and outcome, and

SW0.99 was more effective than an equally-weighted

log-utility objective. This is because the log-utility

prevents effective triaging of resources in general

(anti-triage), and in particular to the low-utility sub-

population, as discussed in Section 3.

For each objective, we computed the “price of fair-

ness” as in [1], which is the relative loss in the utili-

tarian objective due to instead maximizing a fairness-

seeking objective. We also computed this relative

loss with respect to the solution that minimizes the

feature-ignorant sum of distances, which is a common

objective in operations. As should be expected, more

“fair” solutions (with respect to covariance between

type and outcome) tended to have a higher price of

fairness, however this was not always the case, as

SW0.9 has better fairness but a lower cost of fair-

ness than the 0.9-weighted log-probability function.

This is because the cost of fairness was computed

with respect to a utilitarian objective, which the log-

probability function’s optimum was not well-suited to

maximize.

The 0.99-weighted feature-ignorant distance-

minimizing objective performed exceptionally well.

By adding subpopulation-specific weights, the ob-

jective can no longer be called feature-ignorant, but

it’s still interesting that it outperformed several

other solutions that maximized a (weighted) sum

of utilities without considering utilities. This is

promising, as it may not always be feasible consider

individuals’ features for reasons or privacy or data

availability, nor is it likely that a feature-aware utility

function will be justified or reliable. Furthermore,

while off-the-shelf mixed-integer linear programming

(MILP) solvers are able to handle extremely large

problems, mixed-integer nonlinear programming

(MINLP) solvers are often not; the sum-of-weighted-

distances objective is a MILP, while every other

objective is a nonlinear (and not always convex)

MINLP. Simply knowing (or guessing) individuals’

group affiliation and solving a classically-studied,

thoughtfully weighted MILP is likely a good strategy

for achieving many of the goals of this paper.

4.4 Between-Group Approximate α-

Fairness Heuristic

As discussed in Section 4.2 (fairness criteria), in

the group-fairness setting we aim to promote solu-

tions on the efficient frontier of population-wide and

subpopulation-wide social welfare, while controlling

the fraction of effort devoted to different subpopula-
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tions. We defined a family of α-fair utilitarian social

welfare functions (SWα) whose fairness is attenuated

by a parameter α ∈ [0, 1).

Here we propose a heuristic approach that shares

the spirit of the α-fair utilitarian social welfare func-

tions, in that a parameter, which we choose to also

call α, attenuates the tradeoff of effort for the pro-

tected subpopulation and the rest of the population.

Unlike in the social welfare function, where “effort”

represents a weight, in this case effort truly refers to

a fraction of greedy decisions dedicated to serving a

subpopulation as effectively as possible.

4.4.1 An α-Fair Heuristic

A broad class of combinatorial optimization problems

admit a greedy approximation performance guaran-

tee by the classification of their objectives as mono-

tone and submodular, and this facility location prob-

lem is no different.

Consider a finite set U and a set function f : 2U →
R, where 2U represents the power set of U . Then f

is submodular if for any S ⊆ T ⊆ U and x ∈ U \ T ,

f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T ), (20)

meaning the marginal benefit of adding elements is

decreasing. In addition, f is monotone (monotone-

increasing) if f(S) ≤ f(T ).

In the facility-location setting, let f(θi, ri) denote

the benefit to individual i of being located distance ri

from the nearest chosen facility (which is decreasing

in ri). Consider the set of possible facilities U and two

subsets of selected facilities S ⊆ T ⊆ U , along with

dij , the distance between individual i and facility j.

Then the corresponding set function f̃i : 2U → R

f̃i(S) = f(

=ri(S)︷ ︸︸ ︷
(min
j∈S

dij), θi)

is submodular.

Theorem 3. The set function f̃i(S) is submodular.

Proof. Since f̃i is clearly monotone, consider two

cases:

1. f̃i(S) = f̃i(T )

In this case, f̃i(S ∪ {x}) = f̃i(T ∪ {x}) because

the closest facility to individual i in T is no closer

than the closest facility in S; considering a po-

tentially closer facility will either improve both

or neither. Then the two sides of (20) are equal,

and the condition holds.

2. f̃i(S) < f̃i(T )

Here there are three sub-cases.

(a) f̃i(S ∪ {x}) = f̃i(S)

This implies there is a facility in S closer

to individual i than x. Since S ⊆ T , this

implies f̃i(T ∪ {x}) = f̃i(T ) as well. In this

case, condition (20) reads 0 ≥ 0, and thus

holds.

(b) f̃i(S∪{x}) > f̃i(S) and f̃i(T ∪{x}) = f̃i(T )

This implies there is a facility in T closer to

individual i than facility x, but none of the

facilities in S are closer to individual i than

facility x. In this case, the left-hand side of

condition (20) is f̃i(S∪{x})−f̃i(S) > 0 and

the right-hand side is f̃i(T ∪{x})− f̃i(T ) =

0, so the condition holds.

(c) f̃i(T ∪ {x}) > f̃i(T )

This implies that facility x is closer to in-

dividual i than any of those in T . Since

S ⊆ T , x is also closer than any in S, and

f̃i(S∪{x}) > f̃i(S). In particular, however,

it means that
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f̃i(T ∪ {x}) = f̃i({x}) = f̃i(S ∪ {x}).

Then, condition (20) holds by the following:

f̃i(T ) ≥ f̃i(S) (monotonicity)

⇓

f̃i({x})− f̃i(S) ≥ f̃i({x})− f̃i(T )

⇓

f̃i(S ∪ {x})− f̃i(S) ≥ f̃i(T ∪ {x})− f̃i(T ).

So, in all cases, condition (20) holds, and so the set

function f̃i is submodular. �

Note that the sum of submodular set functions is

also a submodular set function, so the objective of

a facility location problem of the form
∑N
i=1 f̃i(S) =∑N

i=1 f(θi, ri(S)) is also submodular.

All monotone submodular functions admit a (1 −
1
e )(≈ 0.632) optimality guarantee for a greedy solu-

tion. As noted in [9], the (1 − 1
e ) guarantee follows

from the definition of submodularity and greediness.

Theorem 4. A nonnegative, monotone, submodular

set function permits a (1− 1
e ) greedy guarantee.

Proof. Consider any monotone submodular function

f and a greedy algorithm that creates sets S0 = {}
and iteratively adds elements Si+1 = Si ∪ {xi+1}
where xi+1 = arg maxx f(Si ∪ {x}). Let S∗ =

arg maxS:|S|=m f(S) denote the cardinality-m max-

imizer of f .

Let S∗ = {y1, . . . , ym} and let xi be the greedy

choices. Now note

f(S∗) ≤ f(Si ∪ S∗)

= f(Si) + (f(Si ∪ {y1})− f(Si))

+ (f(Si ∪ {y1, y2})− f(Si ∪ {y1}))

+ . . .

+ (f(Si ∪ {y1, . . . , ym}︸ ︷︷ ︸
=Si∪S∗

)− f(Si ∪ {y1, . . . , ym−1}))

≤ f(Si) + (f(Si ∪ {y1})− f(Si))

+ (f(Si ∪ {y2})− f(Si))

+ . . .

+ (f(Si ∪ {ym})− f(Si)) (by submodularity)

≤ f(Si) +m(f(Si ∪ {x1})− f(Si)) (xi are greedy)

= f(Si) +m(f(Si+1)− f(Si)),

which shows

f(Si+1)− f(Si) ≥
1

m
(f(S∗)− f(Si)).

Now, this implies

f(Si) ≥ (1− (1− 1

m
)i)f(S∗),

which is demonstrated inductively. First, f(S0) =

f({}) = 0 = (1− (1− 1
m )0)f(S∗). Then,

f(Si+1) ≥ f(Si) +
1

m
(f(S∗)− f(Si))

= (1− 1

m
)f(Si) +

1

m
f(S∗)

≥ (1− 1

m
)(1− (1− 1

m
)i)f(S∗) +

1

m
f(S∗)(induction)

= (1− (1− 1

m
)i+1)f(S∗).

This implies that f(Sm) ≥ (1− (1− 1
m )m)f(S∗), and

since the sequence (1 − 1
m )m is increasing and ap-

proaching 1
e , this implies

f(Sm) ≥ (1− 1

e
)f(S∗) ≈ 0.63f(S∗).

�

The corollarly simply follows from f̃i being non-

negative and monotone-increasing.

Corollary 1. The facility location set function

f̃i(S) permits a (1− 1
e ) greedy guarantee.

Now, this result implies a greedy heuristic for the
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proposed α-fair efficient solution to SWα defined in

(18), for any α! Being a nonnegative linear combi-

nation of nonnegative, monotone, submodular func-

tions, SWα is also nonnegative, monotone, and sub-

modular.

But the objective value of SWα is not as mean-

ingful as the two objectives it balances, attenuated

by “fairness-commitment” or “effort-level” α. In the

same interest of balancing “commitment” towards

multiple subpopulations, we propose a heuristic that

does exactly that through greedy choices.

Definition 4. α-Fair Greedy Solution.

The α-fair greedy solution is that attained by mak-

ing the first b(1−α)mc greedy choices that maximize

population-wide social welfare, and the last dαme
greedy choices that seek to maximize social welfare

of the protected subpopulation.

Suppose the maximum achievable social welfare for

the entire population is A∗, and the maximum achiev-

able social welfare for the protected subpopulation is

L∗. Without much loss in generality, suppose α is

some fraction of the number of selected facilities m,

so αm and (1 − α)m are integers. Then the α-fair

greedy solution, with subpopulation utilities uαG =

(LαG, A
α
G), simultaneously guarantees α(1− 1

e )L∗ and

(1− α)(1− 1
e )A∗.

This is true because, on their own, any αm greedy

choices dedicated to serving the protected subpop-

ulation would achieve at least α(1 − 1
eL
∗, as each

remaining greedy choice would add diminishing so-

cial welfare returns to the eventual (1− 1
e ) guarantee

when α = 1, following from the submodularity dis-

cussed above. Making these greedy choices in addi-

tion to the other (1 − α)m choices, which may also

improve the welfare of this subpopulation, assures the

guarantee. The proof for AαG is the same. We define

the solution as making the protected subpopulation’s

decisions last as this can only improve the outcome

for that subpopulation, which is our central focus.

As should be apparent, these two guarantees will

be far from tight in most problem instances, as can

be seen in Figure 11. The efficient frontier discussed

in the previous section is far from the guarantees for

the α-fair greedy solutions.
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Figure 11: An α-fair greedy solution is guaranteed to
lie to the upper-right of the red dashed line. In partic-
ular, a solution is guaranteed in one of the quadrants
bounded below by red arrows, attenuated by α.

One notable feature of the guaranteed frontier visu-

alized in Figure 11 is that the relative loss to the two

interested subpopulations along the efficient frontier

is extremely small compared to the suboptimality ra-

tio (1− 1
e ). This means that the tradeoffs necessitated

by choosing among α-fair efficient solutions are far

smaller than those typically associated with approx-

imate solutions to computationally hard problems.

5 Conclusion

Much of the literature on fairness in machine learning

focuses on either between-group equality or within-

group inequality. When a systematic disparity in

utilities between subpopulations exists, the two ap-

proaches largely coincide. We point out ways in

which objectives that reduce within-group inequal-
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ity can fail to efficiently serve one or both segments

of a two-group population, and can promote seem-

ingly pathological decisions. In particular, we build

a case against low-utility-averse objectives, such as

the Nash bargaining solution (sum of log-utilities),

as they generally fail to triage resources in favor of

serving individuals who would otherwise experience

the lowest possible utility. Unfortunately, when aim-

ing to reduce inequality throughout an entire popu-

lation, it’s possible to under-serve members of both

high-utility and low-utility subpopulations.

We visit a classical facility location problem, incor-

porate feature-aware individual utilities, and point

out that the typical utilitarian objective (the sum

of individual utilities) can on its own exacerbate

between-group inequality by triaging resources to in-

dividuals in the subpopulation that already experi-

ences systematically high utility. In general, while

considering individuals’ features is the only way to

address systemic inequality between groups defined

by protected features, there is no assurance that do-

ing so will reduce between-group inequality.

In a two subpopulation case, we define efficient and

fair solutions as those on the Pareto frontier of opti-

mal social welfare for a low-utility subpopulation and

that of everyone else. We provide an extremely simple

modification of the typical utilitarian objective that

is guaranteed to attain an efficient and fair solution,

and is attenuated by a single parameter α ∈ [0, 1) via

which many of these solutions can be attained. We

define α-fairness as serving the low-utility subpopula-

tion to at least the level of the α-fair efficient solution.

This provides a standard for applying affirmative ac-

tion, and we think of α as a “level of effort” devoted

to fairness. We argue that when between-group dis-

parities in welfare are considerable, it may be justified

to commit to a high level of effort for fairness, espe-

cially when between-group inequality will persist even

after allocating resources in this way. We provide a

heuristic for applying a given level of effort to fair-

ness in approximate solutions to the facility location

problem.

There are many natural ways to automate the pro-

cess of choosing α that we leave to future work. This

parameter should reflect differences in welfare be-

tween groups: when inequality is larger, a larger α

is justified. There are two cases to consider: when

between-group inequality is very large and when it is

moderate. When between-group inequality is large,

a natural way to select α might be to measure the

disparity between groups by calculating individuals’

utilities based on some “worst-case average” for each

group, by assigning dummy values for resource al-

locations to individuals from the two groups. This

technique is used to evaluate heuristic performance

in facility location problems in [5]. In the other case,

where there is only moderate between-group inequal-

ity that might be eliminated through resource allo-

cation, it would be natural to consider an iterative

process that finds a fair and efficient solution that

minimizes this disparity using binary search over the

domain of α.

We also leave to future work the prospect of ex-

tending the study of fair and efficient solutions and

α-fairness to more than two subpopulations. The α-

fair utilitarian objective simply re-weights individu-

als’ utilities. In a more general framework, α-fairness

could be referred to as ( 1+α
2 , 1−α2 )-fairness (as those

are the weights applied to the two subpopulations in

our scheme, and an extension to k groups could be

α-fairness, for some α ∈ Rk++ that denotes the coef-

ficients applied to the objective terms for individuals

in the different subpopulations. What remains to be

explored is treatment of individuals in the intersec-

tions of multiple subpopulations whose equal welfare

is being sought. In critical race theory, a framework

developed in law, sociology, and ethnic studies, the

term intersectionality describes the reality that the
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intersection of political and social identities can pro-

duce unique - rather than additive - experiences of

marginalization or privilege. Directives to improve

outcomes for several systematically lower-utility sub-

populations would need to be transformed to sepa-

rately consider any and all intersections of those sub-

populations in non-obvious ways.

References

[1] Dimitris Bertsimas, Vivek F. Farias, and Nikolaos

Trichakis. The price of fairness. Operations Research,

59(1):17–31, 2011.

[2] Violet Xinying Chen and J. N. Hooker. Balanc-

ing fairness and efficiency in an optimization model,

2020.

[3] Sam Corbett-Davies and Sharad Goel. The measure

and mismeasure of fairness: A critical review of fair

machine learning. CoRR, abs/1808.00023, 2018.

[4] Sam Corbett-Davies, Emma Pierson, Avi Feller,

Sharad Goel, and Aziz Huq. Algorithmic decision

making and the cost of fairness. In Proceedings of

the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’17,

page 797–806, New York, NY, USA, 2017. Associa-

tion for Computing Machinery.

[5] Gerard Cornuejols, Marshall Fisher, and George L.

Nemhauser. On the uncapacitated location prob-

lem**this research was supported by nsf grants

eng75-00568 and soc-7402516. sections 1–4 of this

paper include a technical summary of some results

given in [2]. some proofs are omitted and may be ob-

tained in [2]. In P.L. Hammer, E.L. Johnson, B.H.

Korte, and G.L. Nemhauser, editors, Studies in In-

teger Programming, volume 1 of Annals of Discrete

Mathematics, pages 163 – 177. Elsevier, 1977.

[6] Cynthia Dwork, Moritz Hardt, Toniann Pitassi,

Omer Reingold, and Richard Zemel. Fairness

through awareness. In Proceedings of the 3rd Inno-

vations in Theoretical Computer Science Conference,

ITCS ’12, page 214–226, New York, NY, USA, 2012.

Association for Computing Machinery.

[7] Toshihiro Kamishima, Shotaro Akaho, and Jun

Sakuma. Fairness-aware learning through regular-

ization approach. pages 643–650, 12 2011.

[8] Fabbri Marco and GC Britto Diogo. Distributive

Justice, Public Policies and the Comparison of Legal

Rules: Quantify the “Price of Equity”. Review of

Law & Economics, 14(3):1–23, November 2018.

[9] Sewoong Oh. Submodular function optimization.

University Lecture, IE 512: Graphs, Networks, and

Algorithms, 2013.

[10] Till Speicher, Hoda Heidari, Nina Grgic-Hlaca, Kr-

ishna P. Gummadi, Adish Singla, Adrian Weller, and

Muhammad Bilal Zafar. A unified approach to quan-

tifying algorithmic unfairness: Measuring individual

and group unfairness via inequality indices. In Pro-

ceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery Data Mining,

KDD ’18, page 2239–2248, New York, NY, USA,

2018. Association for Computing Machinery.

[11] A. Tang, J. Wang, and S. H. Low. Is fair alloca-

tion always inefficient. In IEEE INFOCOM 2004,

volume 1, page 45, 2004.

[12] Muhammad Bilal Zafar, Isabel Valera, Manuel

Gomez Rodriguez, and Krishna P. Gummadi. Fair-

ness beyond disparate treatment and disparate im-

pact. Proceedings of the 26th International Confer-

ence on World Wide Web, Apr 2017.

[13] Muhammad Bilal Zafar, Isabel Valera,

Manuel Gomez Rodriguez, and Krishna P. Gum-

madi. Fairness constraints: Mechanisms for fair

classification, 2015.

[14] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi,

and Cynthia Dwork. Learning fair representations.

In Sanjoy Dasgupta and David McAllester, editors,

Proceedings of the 30th International Conference on

Machine Learning, volume 28 of Proceedings of Ma-

chine Learning Research, pages 325–333, Atlanta,

Georgia, USA, 17–19 Jun 2013. PMLR.

27


