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Abstract

We modify classical resource allocation problems by considering heterogeneity among individual beneficiaries

via feature-aware utility functions, with the goal of reducing unequal social welfare between subpopulations.

We discuss pitfalls of feature-aware optimization, including an exacerbation of between-group inequality,

and we provide examples motivating our idea of efficient and fair solutions. Finally, we propose an exact

method for obtaining solutions with a degree of fairness controlled by a single parameter, and we discuss an

approximate approach whose degree of fairness is attenuated in a similar way.

1 Introduction

Many optimization models assume the perspective
of a social planner, allocating resources so as to in-
crease the utility of individuals within a population.
Our running example will be facility location, which
could refer to establishment of transit stops or polling
places during an election. The social planner’s goal
is to maximize social welfare across a population of
individuals.

Framing the social planner’s task as an optimiza-
tion problem, a non-subjective proxy for utility might
suffice, such as prozimity to nearest facility. Often,
however, individuals have intrinsic features that in-
fluence the utility they derive from a particular re-
source allocation. For example, a polling place one
mile away may be inaccessible to someone whose in-
come is low and is unlikely to own a car; on the other
hand, the utility an individual derives from a transit
stop might depend on their income, in that wealthier
individuals may be unlikely to use the stop.

Some objective terms may not reflect individuals’

utilities, but those that do can be considered together
via a social welfare function. A sum of individual
utilities is a common social welfare function, but this
choice relies on subtle philosophical assumptions, and
there are other natural but less-common strategies.
When individuals’ utilities are a function of both re-
sources allocated and individuals’ features, principled
consideration of the social welfare function may be
warranted.

It is natural to consider fairness in a social plan-
ning setting. A fairness-seeking goal might be equality
across the entire population, meaning low variation in
utility. In our setting, individuals have features that
are protected in a legal or ethical sense, and it is im-
portant to ensure that individuals in groups defined
by these features have comparable outcomes to oth-
ers.

Several problems are used as examples throughout,
but we start by defining the facility-location prob-
lem, in which to explore “fair” allocation of resources
within a heterogeneous population. Section 2 reviews

notions of fair algorithmic decision-making in the eco-



nomics, machine-learning, and operations literature.
Section 3 provides a taxonomy of the adverse “fair”
decision-making and illustrates them through numer-
ical examples, motivating the fairness-inducing social

welfare strategies proposed in Section 4.

1.1 Utility Model

We consider a heterogeneous population of N indi-
viduals, whose individuals experience utility that is
a function of both their features and a resource allo-
cation. Suppose individual ¢ has a feature vector 6;,
is allocated resources r; € R, and experiences utility
u; = f(0s,73).

We are not overly concerned with computational
methods, and don’t impose restrictions on f until
Section 4. In this section we establish a running
example used throughout, though our treatment of
feature-aware individual utility and social welfare is
widely applicable.

In some cases an individual might experience
stochastic binary utility: a successful or unsuccess-
ful outcome, affected but not fully determined by
a social planner’s decisions. In this case, a utility
function could represent the probability of a success-

ful outcome:

u; = f(0i,7i)

= P(individual 7 has a successful outcomel|6;, ;).

Here, an objective of the form Zf\il u; represents the
expected number of successful outcomes. A natural
for f is a logistic function.

Suppose individual i’s feature vector ; consists of
0; = (0Y,0F), their unprotected and protected fea-
tures. For our running example, let 67 = g; € {0,1}
denote the group affiliation of individual 7, i.e. the
protected features consist of a single binary cate-
gorical identifier denoting group affiliation. Sup-

pose there are ny unprotected features and Y =

O ,....07™).

Define the following coefficient vectors:

0, = (67,6])
= (6",....6," . 90),
BY = (875 By,
sr = (8"),
=8,

and then utility can be written

u; = f(0i,73)
B 1
e BOBYTOY—ETOP —prr;

(1)

= P(individual ¢ has a successful outcome|6;, ;).

1.2 Feature-Agnostic Facility Loca-
tion

Our primary running example of social planning is
that of facility location, though our treatment of
feature-aware public resource allocation is applica-
ble to any setting considerate of individual utilities
determined by centralized decision-making.

Suppose there are N individuals and M potential
facilities of which m can be selected. To minimize the
sum of distances to facilities, the following optimiza-

tion problem suffices:

N
min Zri
i=1
M
st T szm%,l 1,...,N
j=1
M
ZIU —1,211, 7]\/v
j=1
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Here, y; represents whether facility j is selected; x;;
represents whether individual ¢ is assigned to facility
7; r; represents individual i’s distance to the closest
facility. In a general sense, r; represents the resource
allocation to individual i. Note that the x;; variables

will naturally be binary.

1.3 Feature-Aware Facility Location

Now suppose individual ’s utility is u; = f(0;,7;)
where 7; is the distance of individual ¢ from their
nearest facility as in (2). Setting aside the form we
specified for f in Section 1.1, a more general problem

setting is the following:

N
max g Us;
i=1

s.t. U = f(@l,rl)
£ > dijxi;
M
> @i =1
j=1
xij Sijizl, ,N,jZI,. ,M
M
2y <m
j=1
Lij Z 0
Yj € {0,1}.

3)
In order for the r; in this problem to continue to
correspond to the distance from the nearest facility, it
is natural to assume %f(&, r) < 0 (a higher distance
yields less utility); in a setting in which r; represented
allocation of a utility-increasing resource, the oppo-
site would be true.
The feature-ignorant facility location formulation

(2) is equivalent to f(6;,7r;) = —r;.
1.4 Social Welfare Function

Incorporating individual utilities into a social plan-
ner’s objective function is the central concern of this
work. In Sections 1.1, 1.2, and 1.3, individual utilities

are either deterministic or stochastic, and they either

ignore or incorporate exogenous individual features,
but in all cases individual utilities are added to create
a social welfare function. This natural formulation is
far from the only possibility; Section 2 reviews so-
cial welfare criteria in the literature, and Section 4
proposes a social welfare functional form promoting
a-fairness.

Social welfare functions can be characterized in
terms of their functional forms or implicitly via opti-
mality conditions. The running example of a facility-
location problem includes discrete decisions and the
notion of differential optimality conditions is not
well-defined. So, we introduce a second resource-
allocation setting with continuous decision variables.
Let uw = (ug,...,un), and consider a “social welfare

function” that is weakly increasing in each u;:

max SW(u)
s.t. Uj = f(Tz)
N
4
i=1
Ti Z 0.

where r; represents the resources allocated to indi-
vidual i.

We list three social welfare objectives from the lit-
erature (theoretically justified in [8] and [2]), ordered

from least-to-most “fairness-seeking”:

1. Fairness-neutral utilitarian objective, attributed
to the social philosopher Jeremy Bentham (“So-
cial Welfare Bentham”):

N
SWB(u) =Y u;, (5)
=1

which in (4) has the interior optimality condi-
tion f'(r;) = f'(r;) ¥ i,j. That is, individuals’

marginal utilities should be equal.

2. Fairness-favoring multiplicative objective, re-

ferred to as the Nash standard of comparison



or Nash bargaining solution (“Social Welfare
Nash”):

N
SWN(u) = Hui, (6)

which clearly leads to the same optima as its

logarithm,

N
SW Nlog(u) = Z log(u;). (7)

Letting g(r;) = log(f(r;)) = log(u;), by the same
reasoning as in the utilitarian objective, an inte-

rior optimality condition is that

which effectively prioritizes lower-utility individ-
uals by associating with the marginal utility a

weight inversely proportional to utility.

This solution maximizes the volume of the N-
dimensional rectangle (orthotope) with opposite
vertices at the origin and the end of the vector

u, and faces parallel to the axes.

. Strongly fairness-inducing max-min objective,
attributed to the American philosopher John
Rawls (“Social Welfare Rawls”):

SWR(u) = (9)

min  u;.
i=1,...,

Optimizing SWR (maximin) will result in the
lowest worst-case inequality of the three objec-
tives listed, but it is indiscriminate between so-
lutions that provide additional benefit to higher-
utility individuals, and it may not always be ap-

propriate.

4. Weighting for fairness:

SWWeight(u) = Z w(6;)u;.

=1

(10)

where w(6;) may simply associate a higher
weight priority to individuals whose type indi-
cates membership in a marginalized group (affir-
mative action), or may be a complicated function
of a multi-dimensional type that prioritizes indi-
viduals who are likely to have a low probability

of success.

Optimizing an appropriate social welfare ob-
jective can induce a range of notions of fair-
ness, some of which have compelling stochastic

interpretations. Recall the stochastic facility lo-

f(Oirs) =
P(individual ¢ has a successful outcomel|6;,r;). In

this case, the objective SWB(u) = Zi\; in (5) is

cation problem (3), where u; =

the expected number of successful outcomes. Alter-
natively the objective SWN(u) = vazl u; in (6) is
the probability that every individual has a successful
outcome.

Note that the logarithm in the Nash bargaining so-
lution (7) can be replaced with any strictly concave
increasing function to achieve a similar low-utility-
aversion, an analog to risk-aversion, effectively pri-
oritizing low-utility individuals. In fact, [11, 2], and
[1] note a family of low-utility-averse functions that

includes (5), (7), and (9):

e =061
ZZ‘ log(uz) : g = ]-7

SWe(u) = (11)

which equals the utilitarian (5) when £ = 0, equals
(7) when £ = 1, and is equal to the max-min (9) when
& — oo. A higher ¢ is associated with a stronger sense
of “fairness”.

We propose the weighted social welfare function



(10) for several reasons. For one, adding weights is
unlikely to require different computational methods,
and so this may provide a flexible fairness-inducing
strategy (as opposed to e.g. composing a logarithm
with utility as in the Nash bargaining solution (7)).
Adding weights eludes a compelling stochastic inter-
pretation like (6) in the preceding paragraphs, but
the optimality conditions in (8) can be reproduced
using an appropriate weighting function, and so pre-
sumably the same “fairness-seeking” results will fol-
low. We argue that this affirmative action-minded
weighting scheme can in fact be more flexible and
powerful in achieving a notion of fairness. This form
is the basis for our proposed fairness-seeking method

in Section 4.

2 Review of Fairness Criteria

In addition to the different notions of fairness pro-
moted by a choice of social welfare function, described
in Section 1.4, many indices have been proposed to
empirically measure fairness, along with strategies to
promote it in optimization. Of central concern is
always a balance of some notion of “accuracy” (or
“utilitarianism” or “efficiency”) with the notion “fair-
ness”. We will advocate for and against some strate-
gies that have been proposed for making this tradeoff,
we will explore what we consider adverse outcomes
in Section 3, and we will propose fairness-inducing
strategies in Section 4.

Most of the indices that follow can be utilized in

optimization in the following ways:

« as an objective function, with accuracy con-

strained to exceed some threshold,

« as a constraint, with accuracy as the stated ob-

Jjective,

e as a term in a constraint that also includes ac-

curacy,

« as one objective among several, at least one of
which measures accuracy, in a multi-objective

optimization problem.

The most important distinction between the fol-
lowing metrics is that some measure between-group
unfairness and others measure within-group unfair-

ness (or individual unfairness), as delineated in [10].

2.1 Between-Group Unfairness

In the following examples, we consider the case of a
population partitioned into two groups, where group
membership of individual ¢ is denoted by indicator
variable g;, constituting the individual’s protected
features: 67 = g;.

A review of fair machine learning is provided in
[3], in which three notions of between-group fairness
are delineated: anti-classification where “protected
attributes—Ilike race, gender, and their proxies—are
not explicitly used to make decisions”, classification
parity where “common measures of predictive perfor-
mance (e.g., false positive and false negative rates)
are equal across groups defined by the protected at-
tributes”, and calibration where “conditional on risk
estimates, outcomes are independent of protected at-
tributes”.

Some of the same authors as [3], in their preview
work [4], discuss the cost of fairness in a decision
process that utilizes exogenous risk scores. They
also note that in a decision problem, utility may be
fruitfully decomposed into an “immediate” and and
long-term utilities, reflecting that any “accuracy” or
“utilitarian” objective need not be the only concern
in resource allocation. They prove that the utility-
maximizing “fair” decision process is to use different
risk score thresholds for different subpopulations.

[12] treats classification parity as disparate mis-
treatment and proposes the covariance between indi-
vidual type and misclassification rate (e.g. false pos-

itive rate) as a reasonable proxy to minimize. This



work is similar to ours in that it deals with decision-
making informed by an exogenous predictive model.
Analogous to their strategy addressing misclassifica-
tion parity, instead of enforcing e-parity in resource

allocation, meaning

[E(f(0,7)lg = 0) = E(f(0,r]g = 1)) <e,

one can instead limit covariance between group mem-

bership and outcome:
|Cou(f(0.7),9)] <e,

and this covariance can be written simply:

Cov(f(0,7),9)) = E((g —9)(f(0,r) — f

~—
~—

LN
=N ;(Qz —9)f(0s, 7).

This fairness-inducing objective is simple and intu-
itive, though we demonstrate drawbacks of objectives
like this in Section 3. An advantage of this covariance
is that it measures the correlation between outcome
and type even when ¢ is not binary-categorical, but
is an arbitrary feature vector.

In [14], a learning algorithm is proposed that simul-
taneously aims to minimize between-group unfairness
and within-group unfairness by ensuring that individ-
uals in a protected group achieve similar outcomes
to the general population, and that individuals with
similar unprotected features receive similar outcomes,
articulated through what they term a Lipschitz con-
dition, proposed in their previous work [6].

In [6], rather than condensing inequality through-
out a population to a single index, between-group
equality is conceived of as a constraint on the distance
between utility distributions conditioned on feature

values. That is, statistical parity up to bias ¢ holds

for groups S and T with distributions ug and pr if
D(ps, pr) < €, where D is a distance metric on the
space of probability distributions. They point out
that the Lipscitz condition is stronger than statisti-
cal parity.

In [6], their goal is to propose a fair affirmative
action scheme, which is similar in spirit to the goals
of this paper. Their intermediate representation of
individuals is also similar in spirit to our proposed

extension of automating the fairness-inducing weight-

assignment, as discussed in section 4.

2.2  Within-Group Unfairness

While between-group unfairness has prominent social
and legal motivations, within-group unfairness is an-
other important measure of equitable resource alloca-
tion, especially when groups are not well-defined or
“protected”. This notion is of unfairness is measured
by the Gini coefficient and the similar McCloone in-
dex, and is the subject of the common idea of “in-
equality”.

In some cases, within-group and between-group
fairness are coth considered as objectives. In [10], the
trade-off between the two is explored along with an
objective called a “generalized entropy index” that
captures both; in their context, reducing between-
group unfairness is proven to be guaranteed to in-
crease within-group unfairness. In [6] and [14], both
are minimized through two novel algorithmic ap-
proaches, the latter of which, like our approach, min-
imizes a linear combination of objectives with coef-
ficients governing the trade-off between fairness and
overall utility (in their case, accuracy).

In [1] (cited repeatedly by [8]), the authors also
propose the Nash standard of comparison (objectives
(6) and (7)), which allocates resources to individuals
who would experience the highest percent change in
utility, and favors the worst-off. The authors describe

the sum of logarithms objective as achieving a propor-



tional fairness criterion only if the space of possible
utility distributions is convex; otherwise, more gener-
ally, this fairness criterion is satisfied by utility vector
u if and only if, for any other utility vector u/, the

“aggregate proportional change” is negative:

<0V eU, (12)

al uh —
where U represents the set of all feasible utility dis-
tributions.

In [11], the social welfare functions in the family
(11) (which includes the utilitarian objective (5) at
& =0, the Nash objective (6) at £ = 1, and the max-
min objective (9) as £ — o0) are applied to a network
optimization problem to promote node equality, in-
terrogating whether a higher level of fairness, atten-
uated by the parameter &, necessarily implies a lower
global utility in terms of network throughput.

[2] is very close in spirit to this paper, as their cen-
tral goal is to balance fairness and efficiency through
multiple objectives. Their objectives are a utilitar-
ian social welfare function and a max-min utility,
while in section 4 we use a utilitarian solution and
a subpopulation-restricted utilitarian solution. Ulti-
mately, they are able to formulate as a MILP a “lexi-

max”

approach that iteratively yields as much utility
as possible for the worst-off individual. We are con-
cerned with the utility of a disadvantaged subpopula-
tion and in fact advocate against always prioritizing

the lowest-utility individuals in Section 3.

2.3 Price of Fairness

In [1], the authors propose that the fairness-neutral
utilitarian objective (5) (with no fairness-inducing
constraints) as a baseline for a “price of fairness”.

That is, given an optimum with respect to a fairness-

*

system and another op-

neutral utilitarian objective u
timum with respect to a fairness-inducing problem

formulation u},;,, the price of fairness is defined as

the percentage decrease in utilitarian objective (5):

SWB(u:ystem) - SWB(u;air)

POF =
SWB(u:ystem) 7

(13)

where SWB(u) = Zil u;. They axiomatically de-
fine a “fair” classifier as one that is Pareto efficient,
in that solutions from a fair classifier cannot be dom-
inated by another, and given this limitation, they can
bound the price of fairness in some settings. In con-
trast, [12] reviews observations that several notions
of fairness not be simultaneously satisfiable.

It is taken as a given in [6] and [14] that to achieve
between-group fairness, classifiers must, to a point,
systematically misclassify individuals from at least
one group. A “cost of fairness” is defined in [4]; a
“price of fairness” is defined in [1]; a “price of equity”
is defined in [8]; “Balancing Fairness and Efficiency”
is the subject of [2]. In [12], which focuses on linearly-
separating classifiers (thresholded logistic regression
and SVM), the rotation of a separating hyperplane to
capture more true- and false-positives from one group
concisely illustrates the trade-off between fairness and
accuracy.

As noted in [12], legal attacks have succeeded
against algorithmic decision-making aiming for pro-
portional outcomes between groups, on the grounds
that it encouraged “reverse-discrimination”. They
cite Ricci vs. Destefano, a 2009 case in which promot-
ing Black firefighters was deemed unconstitutional
due to their having scored lower on a standardized
test than other candidates; the ruling enforced a pol-
icy that promotions go to those scoring in the top
three of applicants, essentially outlawing any affirma-
tive action effort. This type of resistance to equity-
seeking algorithmic decision-making may make a fair-
ness constraint hard to justify in a setting in which al-
gorithmic decisions are immediately operationalized.

In some cases, enforcing a fairness constraint may



result in an infeasible problem, or may degrade out-
comes over the population in an unacceptable way,
as explored in section 3. In these cases, and for a
flexible and interpretable menu of solutions, we pro-
pose a simple re-weighting of individual utilities u; in

section 4.

3 Principles of Adverse Deci-

sionmaking

The topic of fair algorithmic decision making has gar-
nered recent attention in relation to advances in (and
scrutiny of) machine learning. A common concern
is the tradeoff between predictive accuracy and fair-
ness [8, 1, 8, 4, 12, 14, 2, 7, 13]. In any context,
parties may be loathe to sacrifice a notion of “accu-
racy”, “efficiency” or “total utility”. Still, we feel
that when operational decisions, rather than predic-
tors, are being made algorithmically, the principles
of fair decision-making governing this tradeoff merit
increased attention.

Before defining and requiring our own notion of
Pareto efficiency in Section 4, we present several
types of bad decisions that can be made by applying
strategies for fair algorithmic decision-making from
machine-learning literature. Our goal is to show that
strategies proposed in the context of prediction may
not be appropriate in the context of operations.

In this section we cover the striking pitfalls that
can result from exclusively using a fairness-inducing
objective. While this is certainly not proposed in
any context in the literature, it explores the types of
decisions encouraged by avoiding unfairness via the
methods in the works above. These measures of fair-
ness might be a term in an objective, an objective
subjected to an accuracy constraint, one of multiple
objectives including another measuring accuracy, or a
constraint; these examples aim to help us understand

the implications of any of those methods.

The central problem of this work is how to quantify
social welfare from a collection of individual utilities
and features. Utility f(#,r) can be any function in
(exogenous) individual features  and (endogenous)
resource allocation r. We do not rely on concavity,
supermodularity, or the lack of either, in our prob-
lematization of fairness-seeking strategies. A wide
range of conditions can result in “optimally” allocat-
ing disproportionate resources to better-off individ-
uals, and “optimally” depriving others of zero-cost
utility. Some of the examples do not rely on features
at all, and only include one “type” of individual.

To illustrate these examples, however, we choose a
specific family of utility functions, where individual
utility is equated with “probability of success,” and
is given by the logistic model as in (1) with only one
exogenous feature 6;, representing type, as well as the

endogenous r;:

P(success for individual i) = f(6;,r;)
_ 1
T 14 e—Bo—PBebi—prr

(14)

where By > 0 , meaning a higher type results in a
higher success rate. Usually r; represents a “distance
assignment” and [, < 0, meaning a lower distance to
the nearest selected facility results in a higher success
rate; in other examples, r; is a generalized “resource
allocation”, and B, > 0. The values of 3y, 3, are
changed slightly for each example, while Sy = 0 is
used in all; in the spatial examples, this is equivalent
to the examples occurring over regions of different

scales.

3.1 Taxonomy of Adverse Decisions

We define the following types of bad decision-making;:

1. Feature Ignorance. Like all work addressing
between-group inequality, we assert that “fair”

decisions in the context of different subpopula-



tions requires acknowledgement of those subpop-
ulations. Further, we consider that any available
features, in addition to group affiliation, merit
inclusion in a fair optimization model. The stan-
dard of “anti-classification” in machine learn-
ing seeks for subgroup-conditioned expected out-
comes to be comparable, and our proposed meth-
ods for promoting fair between-group outcomes
in Section 4 centrally rely on individuals’ group

identities to do so.

. Adverse Triage. Almost all optimization prob-
lems seek to make decisions with high marginal
utility (triage). We make a distinction be-
tween feature-triage and instance-triage. Fea-
ture triage refers to systematically prioritizing
resources to individuals with a given protected
feature. Instance triage refers to prioritizing re-
sources based on unprotected features, possibly
including or comprising aspects of the problem
instance such as location and graph connectiv-
ity. Each type of triage has a possible adverse

outcome.

(a) Unintended Triage. Being “feature-aware”
always creates the possibility of feature
triage, which can either help or hurt a
lower-utility subpopulation. It is possible
for subgroups to have simultaneously higher
utility and higher marginal utility than oth-
ers due to the role of their features in the
utility function. In this case, the feature-
aware utility function ends up prioritizing
the higher-utility subpopulation! Some so-
cial welfare functions avoid this by prior-
itizing low-utility individuals or promot-
ing equality in the distribution of utilities.
We believe the prioritization of one or an-
other subpopulation should be a separate,

socially-motivated decision by a social plan-

ner, rather than a by-product of systematic
differences in the marginal utilities of differ-
ent subgroups. In Section 4 we propose a
standard of commitment to serving a given

subpopulation.

(b) Anti-Triage. We consider between-group
fairness to be a first-order concern, and oth-
erwise generally advocate for a utilitarian
objective as a measure of social welfare.
Within-group equality is not the main goal
of the methods proposed in Section 4. Part
of the reason why this is not our focus is
that by overly prioritizing low-utility indi-
viduals, natural opportunities to serve indi-
viduals with high marginal utilities are lost,

and we term this phenomenon anti-triage.

For examples, if two individuals have utili-
ties e” and 100e”, the Nash bargaining so-
lution would be indifferent to allocating re-
sources to either individual; an appeal to
max-min equality would favor the former
and is literally insensitive to changes in the
other individuals’ utilities; and an appeal
to utilitarianism would favor the latter. In
contrast to unintended triage, which dis-
proportionately allocates resources to one
group due to the effect of their protected
features on their utility, anti-triage can oc-
cur with or without feature-awareness due
to a failure to apply instance triage. Rather
than prioritizing the lowest-utility individ-
uals, we advocate instead to prioritize sys-
tematically low-utility subpopulations, but
otherwise to respect utilitarian decisions,

and in Section 4 we provide tools to do so.

3. Self-Sabotage can result from some of the

between-group equality-inducing objectives fo-

cused on in the machine-learning literature. For



example, in a discrete resource-allocation prob-
lem, it may be possible to meet the needs of both
high-utility and low-utility individuals, but, in
an effort to reduce the between-group inequal-
ity, the high-utility group will be denied available
resources or resources will be wasted, depending

on the problem formulation.

We strive for solutions on the efficient frontier
of population-wide social welfare and subpopula-
tion social welfare, measured by the same social
welfare function, but restricted to a subpopu-
lation with systematically or historically lower
utility. There are two identifiable and distinct
self-sabotage outcomes, both defined by devia-

tions from this frontier.

(a) Missed Opportunities. Denying high-utility
individuals available resources in order to
reduce the disparity between high- and low-
type individuals amounts to a missed op-
portunity. This would unnecessarily reduce
population-wide welfare in the name of re-
ducing inequality, moving adversely along
the corresponding axis of the efficient fron-
tier. This can characterize decision-making

even in a feature-ignorant setting.

Spiteful Allocation. Possibly more concern-
ing is if many high-utility individuals and
some low-utility individuals could benefit
from a decision that is avoided in the name
of reducing inequality: this we term spite-
ful allocation or cutting off the nose to spite
the face. This moves adversely along both

axes of the efficient frontier.

These examples may seem to argue against using
these measures of fairness in general, but our inten-
tion is to highlight the differences between fair algo-

rithmic decision-making in machine-learning and that

10

in operations.

3.2 Adverse Continuous Resource Al-

location

Consider a variant of (4) with the social welfare func-

tion (5):

N
max Zui
i=1
s.t. Uj = 91',7‘1'
g f(0i,74) (15)
ZTZ' =1
i=1
T 2 0

3.2.1 Unintended Triage in Continuous Re-

source Allocation

The formulation (15) can encourage the exogenously
lower-utility individuals to optimally receive no re-
sources, as in the first pane of Figure 1. This is
an example of unintended triage: individuals with
a high marginal utility due to a protected feature are
favored, and when those individuals also have high
overall utility, feature-awareness widens inequality.
The KKT optimality condition for an interior point
is gof(6i,7i) =

the role of protected features in the utility function

(05,r;) for all ¢ and j. However,

results in globally higher marginal utility one sub-
group, and so the solution is on the boundary where
those individuals receive all the resources.

In the second pane of Figure 1, the Nash bargaining
solution (6) allocates more resources to the low-type
individual, which could be seen as a remedy. In later
examples, however, the Nash bargaining solution will

be seen to result in anti-triage.
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Figure 1: Maximizing the sum of utilities can result
in unintended triage.

3.3 Adverse Discrete Resource Allo-

cation

Unlike the continuous optimization problem in Sec-
tion 3.2, discrete optimization problems do not have
continuous domains, and thus do not have optimal-
ity conditions in terms of marginal utilities. Never-
theless, by visualizing discrete solutions along utility
curves, the same phenomena of bad decisionmaking
can be observed.

Several discrete optimization problems fall under

the general capacitated facility location framework.
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N M
max E E fijxij

i=1 j=1
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j=1
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DU =m
j=1
Lij 207 ’L:].,...,N,
j=1,....M
Yj e{0,1}, j=1,....M.
(16)

While a number of discrete problems are special
cases of the capacitated facility location problem (16),
certainly not all discrete optimization problems are
part of this family. We will give examples from two

special cases:

o Mazimum weighted bipartite matching, which is
a form of one-to-one matching, can also be writ-
ten in the form of (16), where K; =1 and ¢; =0
for all j (facilities can only be matched to one in-

dividual and there is no facility-choice cost).

The uncapacitated facility location problem (3),
the main setting of this paper, can also be writ-
ten in the form of (16), where f;; represents the
utility to individual ¢ when assigned to location
= f(0;,7;)), the facility capac-
oo forall j =1,...,M (all

facilities can accommodate arbitrarily many in-

j (instead of w;
ity K; = N or

dividuals), and facility cost ¢; = 0. In the fa-
cility location problem, utilities f;; depend on
“distance to closest facility”, and so also satisfy
some correspondence to the triangle inequality,
which could be leveraged via the resulting set
submodularity (see Section 4.4.1) or other so-
lution methods; whereas in the general form of

(16), the f;; need not satisfy any correspondence



to the triangle inequality. Facility location is a

one-to-many matching.

3.3.1 Unintended in Maximum

Weighted Bipartite Matching

Triage

We consider a variant of bipartite matching in which
individual utility is equated with their “probability

of success” and is measured as:

1

P(Success) = [(0.7) = 155557

where 6 is the individual type and r represents the
value of the resource with which they are matched,
and is equal to zero if they are not matched. A
higher type and a higher-value resource match re-
sult in higher utility. Importantly, utility is not en-
tirely determined by the matching decision, and is
strictly positive, allowing an easy application of the
Nash social welfare function (7), which is illustrated
as a strategy that avoids unintended triage.

The first pane of Figure 2 demonstrates that the
utilitarian objective (5) can result in high-type indi-
viduals being allocated more higher-value resources,
and for lower-type individuals to be more likely to be
un-matched, in an example of unintended triage. In
constrast, the second pane demonstrates that social
welfare function (7) favors exogenously low-utility in-
dividuals, the effect of which dominates the (unin-

tended) feature-triage.
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Figure 2: Utilitarian objective (5) results in exoge-
nously higher-utility individuals being allocated dis-
proportionately more resources, in an example of un-
intended triage. The equality-seeking social welfare
function (7), by contrast, matches more low-type in-
dividuals to the most valuable resources, and leaves
fewer of them un-matched.

3.3.2 Unintended Triage in Uncapacitated

Facility Location

Figure 3 issues an important warning regarding
feature-aware optimization. Maximizing the sum of
individuals’ probabilities of success, taking into ac-
count their features, may seem to promote fairness,

by in fact avoiding feature ignorance. In this model,



however the low type individual gains less utility from
a close facility than the high type individual, and the
sum of utilities is highest when benefiting the high
type individual, in an example of unintended triage.

As in the continuous example, this issue is avoided,
favoring the individual whose protected features yield
a systematically lower utility, when maximizing the
sum of the logarithms of the utilities (maximizing the
Nash Standard of Comparison, as in [1, 8], and [2],

which is equivalent to maximizing their product).
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Figure 3: Incorporating individual features into

decision-making is essential to fair decision-making,
but can have exactly the opposite effect.



3.3.3 Missed Opportunity in Uncapacitated
Facility Location with Covariance Min-
imization

In Figure 4, placing a facility at location B would
yield improvements for all individuals compared to
location A. However, the objective is minimizing co-
variance between type 6 and f(0,r), adapted from
[13, 12] and [10]. As the higher-type individual has
a much better outcome even at an inferior distance,
the more “fair” solution is to hurt this individual.
This is an example of missed opportunity, a variant

of self-sabotage.

Bad Decisions: Facilities and Individuals
Minimum Cov(type,P(Success))

e
N
&

+x
*
®

P(success)

% Individualtype0 % Individualtypel - Selected Facity  + Onmitted Facility

Figure 4: Minimizing covariance encourages a deci-
sion whose utility for the two individuals is dominated
by the other option.

3.3.4 Spiteful Allocation in Uncapacitated
Facility Location with Covariance Min-
imization

Bad Decisions: Facilities and Individuals
Minimum Cov(type,P(Success))
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Figure 5: Minimizing covariance encourages decisions
whose utility among individuals in both groups is
dominated by other options.

In figure 5, again minimizing covariance results in
self-sabotage, but in such a way that individuals from
both groups are worse-off. When one facility is se-

lected, it is facility A, which yields worse outcomes

14



for all individuals than location B (including two low-
type individuals). When two facilities are selected,
location A is included even though it provides no
additional utility to any individuals simply because
the outcomes of the high-type individuals are already
much better than those of the low-type individuals,
and improving their outcomes further would increase
inequality.

3.3.5 Self-Sabotage in Uncapacitated Facil-
ity Location with Generalized Entropy
Minimization

Bad Decisions: Facilities and Individuals
Minimum Generalized Entropy

P(success)

* 4

* Individualtype0  + Selected Facility ~ + Omitted Facility

Figure 6: Minimizing generalized entropy encourages
choosing a facility that results in the least possible
average utility. This example has only one type of
individual.

Figure 6 illustrates that individual features and/or
group affiliation are not essential for encouraging self-
sabotage. The objective is to minimize the generalized

entropy function from [10]:

1

£%(u) = Na(a—1)

)] o

1

K2
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While the solution selecting the facility at location
A is not dominated by those at B or C, the identical
individuals near location B would outnumber the in-
dividual near location A and receive the same utility
were the facility at location B chosen. While general-
ized entropy was used to produce this plot, minimizes
any index that measures “inequality” would have this
effect. That is, a Gini coefficient or McCloone index
could produce this same phenomenon.

This example of self-sabotage is classified as a
missed opportunity, but it could also be viewed as
spiteful allocation in that the (majority of) individu-
als receiving lower-than-possible utility in the name
of “equality” are of the same group as the individual
near the facility at location A whose low utility is be-
ing avoided. This could be described as cutting off

the nose to spite the face.

3.3.6 Anti-Triage in Uncapacitated Facility
Location with Nash Bargaining Solu-

tion

In several examples in this section, the Nash bargain-
ing solution, via objective (7) (sum of log-utilities),
is presented as a remedy to unintentional triage, by
favoring low-utility individuals when they are the vic-
tims of feature-triage. Unfortunately, this can pre-
vent efficient instance triage, resulting in many fairly
low-utility individuals instead of just one individual
with utility that is even lower, but only by a small

amount.
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Figure 7: The Nash bargaining solution, which pri-
oritizes the lowest-utility individuals, places facilities
at locations A and C, rather than B and C, which
would result in a greater utilitarian objective. We
consider the over-investment in avoiding a low-utility
individual to be anti-triage, which is in this case a
failure to apply instance triage.

Failing to maximize the utilitarian objective is not
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automatically an example of anti-triage: indeed, de-
creasing the utilitarian objective in order to benefit
a systematically lower-utility protected group is the
central focus of this paper. In contrast, devoting un-
due resources to an individual who has a low utility
in the utilitarian solution due to unprotected features,
such as their location within a problem instance, is an
example of anti-triage. We consider between-group
equality to be a first-order concern, but otherwise
advocate for a utilitarian objective rather than an

equality-promoting one.

4 Commitment to a-Fairness

If one group is systematically disadvantaged, regard-
less of equality-seeking methods applied, the outcome
of social planning will still likely fail to create equity.
We propose that inequity, whether or not it can be
equalized through decisionmaking, should motivate
efforts to serve lower-utility individuals and/or sub-
populations.

Instead of attempting to quantify and control a nu-
merical index of inequality between subpopulations,
we propose instead to focus on the fraction of effort
devoted to serving the various subpopulations, and
describe how to incorporate that into an objective.
We describe the sense in which this produces “effi-
cient” solutions with respect to utility in the popula-
tion overall and within the subgroup.

Finally, we propose a heuristic in the same spirit,
which finds approximate solutions while devoting a

specified fraction of effort to different subpopulations.

4.1 Efficient Solutions

In Section 3, we criticize the application of objectives

that:

o fail to usefully allocate available resources to
high-utility individuals to promote equality,
which can hurt either strictly the high-utility in-



dividuals (missed opportunity) or both high- and

low-utility individuals (spiteful allocation);

« systematically triage resources away from a sub-
population identified by a protected feature (un-

intended triage); and

« fail to triage resources when appropriate (anti-

triage).
These adverse outcomes result from:

« maximizing feature-aware utility without priori-
tizing lower-utility subpopulations identified by

a protected feature
 optimizing a fairness index, such as

— minimizing covariance between protected
features and utility
— minimizing an inequality index such as gen-

eralized entropy or a Gini coefficient

+ optimizing a low-utility-averse transformation of

individual utility, such as those in (11) for £ > 0:

ﬁziug_giﬁzof#l
> oilog(u) : € =1,

SWe(u) =

which include

— the Nash standard of comparison (7) when
e=1
— the max-min social welfare objective (9)

when & — oo

We propose that “fair and efficient” solutions lie on
the frontier of utility allocated to the entire popula-
tion vs. utility allocated to a subpopulation identified

by a protected feature.
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The three panes of Figure 5 can be thought of
The

first pane (‘distance’) is the efficient frontier of the

as different strategies to promoting fairness.

feature-ignorant objective of minimizing the sum of
distances between facilities and individuals. The sec-
ond pane (‘prob’) is the efficient frontier of max-
imizing the sum of individuals’ utilities (u; =
f(0;,7;)P(Success|0;,7;)), which are a function of
their distance to the nearest facility as well as their
features (social welfare function (5)). The third pane
(‘logprob’) is the efficient frontier of maximizing the
sum of the logarithm of individuals’ utilities (social
welfare function (7)).

Section 3 advocates against striving for the frontier
in the first pane, as it is based on a feature-ignorant
objective. Section 3 also takes issue with the low-
utility-averse transformation applied to utility yield-
ing the frontier in the third pane, which may focus
too heavily on avoiding individuals with very low util-
ity, regardless of their protected features. Instead, we
advocate for seeking solutions on the efficient frontier
in the second pane.

As should be clear from Figure 8, the efficient solu-
tions with respect to one social welfare function may
not be efficient with respect to another. Some ef-
ficient solutions may coincide across objectives, but
this figure should illustrate that, for example, an effi-
cient Nash bargaining solution may be “dominated”
in the sense that some other solution yields a utili-

tarian improvement to both low-type individuals and

the population as a whole.

4.2 o-Fairness in a Social Welfare

Function

There is no a priori reason to prefer any of the so-
lutions along the efficient frontier illustrated in the
second pane of Figure 8, except perhaps the top-left
solution, which is the utilititarian objective, which

maximizes the sum of utilities across the entire pop-
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ulation.

In the context of operations contracting, it is com-
mon for a parameter to denote an exogenous “nego-
tiating power” between parties when a continuum of
efficient contracts exists. Similarly, we consider the
choice of which efficient solution is most appropriate
to be an exogenous negotiation reflecting the urgency
of prioritizing a subpopulation’s welfare. In Section
4.3, we develop tools to inform this type of decisions.

Where along the frontier of “efficient” solutions a
social planner decides is most appropriate can be de-
scribed succinctly by a single parameter, which we
call «, corresponding to a “fraction of effort” allo-
cated to the subpopulation.

Consider a subpopulation defined by a binary pro-
tected feature § = 0, known as “type-0” individuals;
for the rest of the population, known as “type-17,
0 = 1. The a-fair utilitarian objective is defined as

follows:

DEFINITION 1. «-Fair Utilitarian Objective
For a € 10,1) and a utility distribution u, the a-fair

utilitarian objective is

_l4a (1-

a)

SW, (u) u; +

3:0;,=0

> wi (18)
4:0; #0
DEFINITION 2. «-Fair Efficient Solution
For a € [0,1) and a utility distribution u, the a-fair
efficient solution is
u) = arg max SW, (u). (19)

Note that the objective (18) is a form of the so-
cial welfare function (10) defined in Section 1.4. A
higher value of « € [0,1) allocates an arbitrarily high
priority to individuals in the type-0 subpopulation.
At a = 1, only the utility of type-0 individuals is
included, and the objective becomes insensitive to
changes in the utility of the rest of the population,

which is no longer guaranteed to yield a solution on



the efficient frontier of solutions in Figure 9, as are

other values of a.
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Figure 9: The first pane depicts the frontier of effi-
cient solutions with respect to the social welfare of
the entire population and the type-0 subpopulation,
as well as the a-fair efficient solutions comprising the
convex hull of the region bounded by the frontier and
the origin. The second pane depicts the utility to
the two subpopulations at solutions optimizing the
a-Fair Utilitarian objective.

THEOREM 1. Solutions mazximizing the a-Fair Util-
itarian Objective are on the efficient frontier of sub-

population social welfare for all o € [0,1).

Proof. Consider the alternative, a solution u maxi-
mizing (18) for some « € [0, 1) for which another so-
lution u exists that weakly improves both the social

welfare of the type-0 subpopulation as well as to the

type-1 subpopulation (or equivalently the population

overall). Substituting @ then weakly improves both

1— .
( 20‘) Zi:ﬂﬁéo U 10 (18)7
contradicting the optimality of w. O

14+

terms 5

i0,=0 Wi and

Furthermore, many of the solutions on the efficient
frontier of subpopulation social welfare can be ob-
tained by maximizing the a-Fair Utilitarian Objec-
tive. In particular, all solutions on the convex hull
of the region bounded by the origin and the efficient
frontier can be found in this way. Note that the effi-
cient frontier is not convex, and indeed not all efficient
solutions can be found in this way, as can be seen in
Figure 9. This convex hull limits the severity of the
trade-off between subpopulation utilities to some ex-
tent, and we believe that this technique’s simplicity
outweighs its lack of comprehensiveness with respect

to attaining every possible efficient solution.

THEOREM 2. All solutions on the convex hull of the
efficient frontier of subpopulation social welfare are
obtained by mazrimizing the a-Fair Utilitarian Objec-

tive SW,, for some o € [0,1).

Proof. Consider the solutions on the convex hull
of the region bounded by the efficient frontier and
the origin, and refer to the summed utility to the
“low-utility” subpopulation as L, and the summed
population-wide utility as A (“all others”), denoted
by u = (L, A), with A* and L* being the extreme val-
ues attainable via a utilitarian objective and an objec-
tive that fully prioritizes the utility of the low-utility
subpopulation. For simplicity, consider a slight vari-
ant of SW,, called SW, that simply maximizes a
convex combination of L and A (the result still holds
for SW,).

jective is then simply written

This variant of the a-fair utilitarian ob-

SWo(u) =L + (1 —a)A.

We prove the theorem by induction. To start, SWo
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and a sequence of SW,, with o — 1 will clearly attain
the extreme solutions A* and L*, respectively. We
then show that any solution that is “between” two
solutions on this convex hull that are both attainable
for values of « € [0,1) is also attainable for some
value of a € [0,1).

Consider three consecutive points on the convex
hull of the efficient frontier of subpopulation-wide and

population-wide social welfare:

Ly
uy = )

Ay

Ly
Uz = )

Aa

As
us =

L3

Say these solutions run from “top-left” to “bottom-
right” of the frontier (visualized in the first pane of
Figure 9), and as they are efficient, none dominates

any other:

Li <L, < L3
Ay > Ay > Az

Furthermore, as these solutions are on the convex hull
of the region bounded by this frontier and the origin,
it must be the case that us is on the “top-right” side
of the line segment connecting u; and us.

Without loss of generality, assume Ly = 0 = A3 (or
consider applying the orientation-preserving transla-
tion L — L—Lq, A— A— A3). In this case, ug being
to the “top-right” of the segment connecting u; and

ug simply means:

Ap > éLz + 4
Ls

A L:
s (and (1 — o) = 53-), we
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evaluate the variant of the a-fair utilitarian objective

at ui, uo, and ug to yield

0
AL
A+ L3
SWQ(U3) =als;+ (1 - a) Az
~~
=0
. A1L3
A1+ Ls
SWa(ug) = aly + (1 — a)Ay
ALy L3
A+ Ls Ay + L3
AL L A
> 12 2 [1L2 + A1]
. 2A1L2 4 A1L3
A+ Ly A + L
—_———— —_————
>0 =SW o (u1)=SWa (us)
Since SW,, (for @ = ﬁ) attains a greater value

at ug than uy or ug , us is the maximizer of SW,,.

By induction, all solutions along the convex hull
of the efficient frontier, ranging between the solution
that achieves L* and the one that achieves A*, are
attained by maximizing SW,, for some o € [0,1).

As noted earlier, SW,, is simply a relabeling of
SW, to simplify notation during the proof, and the
result holds for SW,, as well. [

Finally, we define a-fairness.

DEFINITION 3. a-Fairness

For a € 10,1), let Ly, be the utility to the (low-utility)
protected subpopulation in the a-fair efficient solution
(which mazimizes SW, ). An a-fair solution is any
solution that achieves at least L., utility for the pro-

tected subpopulation.

For all experiments presented in this paper, so-
lutions to discrete optimization problems were ei-
ther found through exhaustive search or using COIN-
OR’s BONMIN mixed-integer nonlinear program-



ming (MINLP) solver, neither of which addresses the
NP-hardness of these problems in general.

We do not propose any algorithm for attaining o-
fair solutions, which is in general as computationally
hard as finding a-fair efficient solutions. In Section
4.4.1, however, we present an algorithm that is guar-
anteed to attain a fraction of L., and which shares
the spirit of a-fairness, in that it devotes a fraction
of effort to the protected subpopulation, subject to
the social planner’s social or ethical prioritization of

benefiting that subpopulation.

4.3 Choosing «

We propose an extension of this work dedicated to
automating the process of choosing an « that reduces
between-group inequality without inverting and then
exacerbating the between-group inequality. For now,
we explore the effect of changing « on the population-
and subpopulation-wide distribution of utilities in a
facility location setting.

In the social context we wish to bear in mind, there
are subpopulations whose systematically lower util-
ity is likely to persist regardless of the effort of the
social planner. The lower utility could be caused
by a learned coefficient in a stochastic utility func-
tion (such as (1)) that predicts worse outcomes for
members of that group, or due to some unprotected
features that result in systematically worse outcomes
(such as location).

Whatever the reason, one subpopulation is identi-
fied as being likely to suffer lower utilities than an-
other, or than the population as a whole. A social
planner elects to maximize the a-fair utilitarian ob-
jective SW,, to find an a-fair efficient solution.

What effect is this likely to have on the distribution
of utilities among the population and among the pro-
tected subpopulation? How do the outcomes compare
to a strictly utilitarian objective, a Nash bargaining

solution, a feature-ignorant solution, or other a-fair
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efficient solutions?

We conducted numerical experiments to explore
this question, maximizing several objectives over
many trials of an uncapacitated facility location prob-
lem. In Figure 10, we plot the empirical CDF of out-
comes for the low-utility subpopulation (marked 6p)
and the high-utility subpopulation (marked 6;).

We also observed the result of objectives similar to
the a-fair utilitarian objective, with a and (1 — «)
weights, but replacing utility with distance to closest
facility (as in the feature-ignorant objective) and log

utility (as in the Nash bargaining solution).
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Figure 10: Empirical CDF of utility and feature-
ignorant distance from nearest facility across the pop-
ulation



The motivating setting described in the beginning
of this section is when the welfare of the low-utility
subpopulation is so much lower than that of the high-
utility subpopulation that no amount of fairness can
“overshoot” between-group equality, and this experi-
ment was tuned as such. As can be seen in Figure 10,
the outcomes for the subpopulation with § = 1 are
significantly better than those of the subpopulation
with @ = 0 even after optimizing all of the fairness-
seeking objectives: the empirical distributions of util-
ity nearly stochastically dominate.

What is notable in Figure 10 is that every one of the
“fairness-” or “equality-seeking” objectives ends up
inducing a worse distance distribution for the high-
utility subpopulation than for the low-utility subpop-
ulation. That is, while utility is determined by both
resource allocation (r;) and type (6;), any feature-
aware equality-seeking objective will identify the need
to allocate more resources to the population with sys-
tematically lower utilities; any fairness-seeking objec-
tive, like SW,, or a similarly weighted version of the
Nash bargaining solution objective (7), will also pri-
oritize allocating resources for this subpopulation.

As should be expected, a high value of a results
in utility distributions that are closer together. The
objectives are ordered in the legend and the table ac-
cording their performance with respect to minimiz-
ing the covariance between type and outcome, and
SWy.99 was more effective than an equally-weighted
log-utility objective. This is because the log-utility
prevents effective triaging of resources in general
(anti-triage), and in particular to the low-utility sub-
population, as discussed in Section 3.

For each objective, we computed the “price of fair-
ness” as in [1], which is the relative loss in the utili-
tarian objective due to instead maximizing a fairness-
seeking objective. We also computed this relative
loss with respect to the solution that minimizes the

feature-ignorant sum of distances, which is a common

objective in operations. As should be expected, more
“fair” solutions (with respect to covariance between
type and outcome) tended to have a higher price of
fairness, however this was not always the case, as
SWpy.9 has better fairness but a lower cost of fair-
ness than the 0.9-weighted log-probability function.
This is because the cost of fairness was computed
with respect to a utilitarian objective, which the log-
probability function’s optimum was not well-suited to
maximize.

The 0.99-weighted feature-ignorant distance-
minimizing objective performed exceptionally well.
By adding subpopulation-specific weights, the ob-
jective can no longer be called feature-ignorant, but
it’s still interesting that it outperformed several
other solutions that maximized a (weighted) sum
of utilities without considering wutilities.  This is
promising, as it may not always be feasible consider
individuals’ features for reasons or privacy or data
availability, nor is it likely that a feature-aware utility
function will be justified or reliable. Furthermore,
while off-the-shelf mixed-integer linear programming
(MILP) solvers are able to handle extremely large
problems, mixed-integer nonlinear programming
(MINLP) solvers are often not; the sum-of-weighted-
distances objective is a MILP, while every other
objective is a nonlinear (and not always convex)
MINLP. Simply knowing (or guessing) individuals’
group affiliation and solving a classically-studied,
thoughtfully weighted MILP is likely a good strategy

for achieving many of the goals of this paper.

4.4 Between-Group Approximate -

Fairness Heuristic

As discussed in Section 4.2 (fairness criteria), in
the group-fairness setting we aim to promote solu-
tions on the efficient frontier of population-wide and
subpopulation-wide social welfare, while controlling

the fraction of effort devoted to different subpopula-
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tions. We defined a family of a-fair utilitarian social
welfare functions (SW,,) whose fairness is attenuated
by a parameter « € [0, 1).

Here we propose a heuristic approach that shares
the spirit of the a-fair utilitarian social welfare func-
tions, in that a parameter, which we choose to also
call o, attenuates the tradeoff of effort for the pro-
tected subpopulation and the rest of the population.
Unlike in the social welfare function, where “effort”
represents a weight, in this case effort truly refers to
a fraction of greedy decisions dedicated to serving a

subpopulation as effectively as possible.

4.4.1 An o-Fair Heuristic

A broad class of combinatorial optimization problems
admit a greedy approximation performance guaran-
tee by the classification of their objectives as mono-
tone and submodular, and this facility location prob-
lem is no different.

Consider a finite set U and a set function f : 2V —
R, where 2V represents the power set of U. Then f
is submodular if for any SCT CU and x € U\ T,

fSu{a}) = £(5) = (T U{z}) - f(T),  (20)

meaning the marginal benefit of adding elements is
decreasing. In addition, f is monotone (monotone-
increasing) if f(S) < f(T).

In the facility-location setting, let f(6;,r;) denote
the benefit to individual 7 of being located distance r;
from the nearest chosen facility (which is decreasing
inr;). Consider the set of possible facilities U and two
subsets of selected facilities S C T C U, along with
d;;, the distance between individual 7 and facility j.
Then the corresponding set function f; : 2V — R

=7i(S)

- ——N—

fi(S) = f((mind;), 0;)

jES
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is submodular.

THEOREM 3. The set function f;(S) is submodular.

Proof. Since f; is clearly monotone, consider two

cases:

L. fi(S) = fi(T)
In this case, f;(S U {z}) = fi(T U {z}) because
the closest facility to individual ¢ in 7" is no closer
than the closest facility in S; considering a po-
tentially closer facility will either improve both
or neither. Then the two sides of (20) are equal,

and the condition holds.

fi(8) < f(T)

Here there are three sub-cases.

(a) fi(SU{z}) = fil)
This implies there is a facility in S closer
to individual ¢ than z. Since S C T, this
implies f;(T U {x}) = fi(T) as well. In this
case, condition (20) reads 0 > 0, and thus
holds.

fi(su{a}) > fi(S) and fy(TU{z}) = fi(T)
This implies there is a facility in T closer to
individual ¢ than facility =, but none of the
facilities in S are closer to individual ¢ than
facility x. In this case, the left-hand side of
condition (20) is f;(SU{z})—f;(S) > 0 and
the right-hand side is f;(TU{z}) — fi(T) =
0, so the condition holds.

fT u{x}) > fi(T)

This implies that facility « is closer to in-
dividual 7 than any of those in 7. Since
S C T, x is also closer than any in S, and
fi(SU{z}) > fi(S). In particular, however,

it means that



F(TU{z}) = fi{z}) = fi(S U {a}).

Then, condition (20) holds by the following;:

fi(T) > f;(S) (monotonicity)
U
filfz}) = fu(S) = fil{=}) — Fi(T)
U
fi(su{z}) = fi(S) = fi(T u{z}) - fi(T).

So, in all cases, condition (20) holds, and so the set

function fl is submodular. [J

Note that the sum of submodular set functions is
also a submodular set function, so the objective of
a facility location problem of the form Zf\;l fi(S) =
Zil f(6;,7:(S)) is also submodular.

All monotone submodular functions admit a (1 —
(=

tion. As noted in [9], the (1 —

0.632) optimality guarantee for a greedy solu-
1) guarantee follows

from the definition of submodularity and greediness.

THEOREM 4. A nonnegative, monotone, submodular

set function permits a (1 — %) greedy guarantee.

Proof. Consider any monotone submodular function
f and a greedy algorithm that creates sets Sy = {}
and iteratively adds elements S;11 = S; U {zit1}
f(S; U {z}). Let S*
—m f(S) denote the cardinality-m max-

where z;,11 = argmax,
arg maxg, g
imizer of f.

Let S* = {y1,...,ym} and let x; be the greedy

choices. Now note

f(57) < f(SiuST)
= f(S) + (F(SiU{y}) = f(S)
+ (f(Si U{yr,p2}) — f(SiU{w1}))
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+ ...
+ (f(S; U{y1,...

—S,US*
+ (f(Siu{m}) -

f(53))

7ym}) - f(SZ U {ylv s 7ym71}))

< f(Si)
+ (f(S: U{y2}) —

f(53))

(f(S; U{ym}) — f(S:)) (by submodularity)
F(Si) +m(f(Si U{xz1}) — f(Si)) (2 are greedy)
= f(S:) + m(f(Sis1) = f(Si)),

+
+
<

which shows

f(Siv1) — f(Si) = —(f(57) = f(S5i)).

1
m
Now, this implies

> (1 (1 1)) p(s7),

m

f(Si)

which is demonstrated inductively. First, f(Sq) =

FN =0=(1~(1~)"f(S*). Then,
F(Sis1) 2 (8 + - (F(57) = £(5)
= (1 )8+ (S")
> (1= )1 = (1= L))F(5") + - £(S") induction)
= (- (1= ) )f(S°).
This implies that f(S,,) > (1—(1—2)™)f(S*), and
since the sequence (1 — )™ is increasing and ap-

proaching %, this implies

F(Sm) 2 (1= 2)f(57) = 0.63f(5")

O

The corollarly simply follows from ﬁ being non-

negative and monotone-increasing.

COROLLARY 1.
fi(S) permits a (1 —

The facility location set function

é) greedy guarantee.

Now, this result implies a greedy heuristic for the



proposed a-fair efficient solution to SW,, defined in
(18), for any a! Being a nonnegative linear combi-
nation of nonnegative, monotone, submodular func-
tions, SW,, is also nonnegative, monotone, and sub-
modular.

But the objective value of SW, is not as mean-
ingful as the two objectives it balances, attenuated
by “fairness-commitment” or “effort-level” «. In the
same interest of balancing “commitment” towards
multiple subpopulations, we propose a heuristic that

does exactly that through greedy choices.

DEFINITION 4. «-Fair Greedy Solution.

The o-fair greedy solution is that attained by mak-
ing the first |(1—«a)m] greedy choices that maximize
population-wide social welfare, and the last [am]
greedy choices that seek to mazimize social welfare

of the protected subpopulation.

Suppose the maximum achievable social welfare for
the entire population is A*, and the maximum achiev-
able social welfare for the protected subpopulation is
L*. Without much loss in generality, suppose « is
some fraction of the number of selected facilities m,

so am and (1 — a)m are integers. Then the a-fair

greedy solution, with subpopulation utilities ug
(L&, Ag), simultancously guarantees (1 — 1)L* and
(1-a)(1-1)a~

This is true because, on their own, any am greedy
choices dedicated to serving the protected subpop-
ulation would achieve at least a(l — %L*, as each
remaining greedy choice would add diminishing so-
cial welfare returns to the eventual (1 — é) guarantee
when o« = 1, following from the submodularity dis-
cussed above. Making these greedy choices in addi-
tion to the other (1 — a)m choices, which may also
improve the welfare of this subpopulation, assures the
guarantee. The proof for AZ is the same. We define
the solution as making the protected subpopulation’s

decisions last as this can only improve the outcome
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for that subpopulation, which is our central focus.
As should be apparent, these two guarantees will
be far from tight in most problem instances, as can
be seen in Figure 11. The efficient frontier discussed
in the previous section is far from the guarantees for

the a-fair greedy solutions.

Efficient Frontier of P(Success) for Population vs Subpopulation

w\

A A - a-Fair Greedy Guarantee

—— Efficient Frontier of prob

(=
|
ol
>

A: prob-Utility
for entire population

(-4’
L: prob-Utility
for type-0 subpopulation

Figure 11: An a-fair greedy solution is guaranteed to
lie to the upper-right of the red dashed line. In partic-
ular, a solution is guaranteed in one of the quadrants
bounded below by red arrows, attenuated by a.

One notable feature of the guaranteed frontier visu-
alized in Figure 11 is that the relative loss to the two
interested subpopulations along the efficient frontier
is extremely small compared to the suboptimality ra-
tio (1—2). This means that the tradeoffs necessitated
by choosing among a-fair efficient solutions are far
smaller than those typically associated with approx-

imate solutions to computationally hard problems.

5 Conclusion

Much of the literature on fairness in machine learning
focuses on either between-group equality or within-
group inequality. When a systematic disparity in
utilities between subpopulations exists, the two ap-
proaches largely coincide. We point out ways in

which objectives that reduce within-group inequal-



ity can fail to efficiently serve one or both segments
of a two-group population, and can promote seem-
ingly pathological decisions. In particular, we build
a case against low-utility-averse objectives, such as
the Nash bargaining solution (sum of log-utilities),
as they generally fail to triage resources in favor of
serving individuals who would otherwise experience
the lowest possible utility. Unfortunately, when aim-
ing to reduce inequality throughout an entire popu-
lation, it’s possible to under-serve members of both
high-utility and low-utility subpopulations.

We visit a classical facility location problem, incor-
porate feature-aware individual utilities, and point
out that the typical utilitarian objective (the sum
of individual utilities) can on its own exacerbate
between-group inequality by triaging resources to in-
dividuals in the subpopulation that already experi-
ences systematically high utility. In general, while
considering individuals’ features is the only way to
address systemic inequality between groups defined
by protected features, there is no assurance that do-
ing so will reduce between-group inequality.

In a two subpopulation case, we define efficient and
fair solutions as those on the Pareto frontier of opti-
mal social welfare for a low-utility subpopulation and
that of everyone else. We provide an extremely simple
modification of the typical utilitarian objective that
is guaranteed to attain an efficient and fair solution,
and is attenuated by a single parameter « € [0,1) via
which many of these solutions can be attained. We
define a-fairness as serving the low-utility subpopula-
tion to at least the level of the a-fair efficient solution.
This provides a standard for applying affirmative ac-
tion, and we think of a as a “level of effort” devoted
to fairness. We argue that when between-group dis-
parities in welfare are considerable, it may be justified
to commit to a high level of effort for fairness, espe-
cially when between-group inequality will persist even

after allocating resources in this way. We provide a

heuristic for applying a given level of effort to fair-
ness in approximate solutions to the facility location
problem.

There are many natural ways to automate the pro-
cess of choosing «a that we leave to future work. This
parameter should reflect differences in welfare be-
tween groups: when inequality is larger, a larger «
is justified. There are two cases to consider: when
between-group inequality is very large and when it is
moderate. When between-group inequality is large,
a natural way to select o might be to measure the
disparity between groups by calculating individuals’
utilities based on some “worst-case average” for each
group, by assigning dummy values for resource al-
locations to individuals from the two groups. This
technique is used to evaluate heuristic performance
in facility location problems in [5]. In the other case,
where there is only moderate between-group inequal-
ity that might be eliminated through resource allo-
cation, it would be natural to consider an iterative
process that finds a fair and efficient solution that
minimizes this disparity using binary search over the
domain of a.

We also leave to future work the prospect of ex-
tending the study of fair and efficient solutions and
a-fairness to more than two subpopulations. The a-
fair utilitarian objective simply re-weights individu-
als’ utilities. In a more general framework, a-fairness

lta l-—a

could be referred to as (=5, -5

)-fairness (as those
are the weights applied to the two subpopulations in
our scheme, and an extension to k groups could be
a-fairness, for some a € R’i . that denotes the coef-
ficients applied to the objective terms for individuals
in the different subpopulations. What remains to be
explored is treatment of individuals in the intersec-
tions of multiple subpopulations whose equal welfare
is being sought. In critical race theory, a framework

developed in law, sociology, and ethnic studies, the

term intersectionality describes the reality that the
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intersection of political and social identities can pro-

duce unique - rather than additive - experiences of

marginalization or privilege.

Directives to improve

outcomes for several systematically lower-utility sub-

populations would need to be transformed to sepa-

rately consider any and all intersections of those sub-

populations in non-obvious ways.
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