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1 Introduction

Individual-level features are a natural consideration in centralized resource allocation: for example,

public transit stops should optimally be placed near those without cars, and vaccine outreach should

be directed towards those who are unvaccinated. While individual addresses are publicly available

in much of the US, individual car-ownership and vaccination status are generally private. What

is publicly known about these and other private individual data are aggregate measures. The US

census reports on car ownership in each tract, and public health organizations commonly report on

zip-code-wide vaccination levels. This model of uncertainty in individual-level features is ubiquitous,

and it is worth devoting special attention to optimization in its setting.

Not only do individual-level features improve resource allocation, but failure to consider them

may result in adverse outcomes for groups of individuals that become crystal clear when individual-

level data is separately obtained and analyzed. In fact, inequality in outcome between members

of different groups - even when unavoidable, or when group membership is unobservable to a

decisionmaker - is a widely recognized form of algorithmic bias. It may be necessary to include

sensitive features in a model to mitigate unequal outcomes; if features are unknown, it may be

necessary to include them as uncertain parameters.

By leveraging known individual-level group membership data, via ecological inference, we may

be able to gain insight into the exceedingly useful individual-level private features (such as car

ownership or vaccination status). In short, if there are many aggregate units (e.g. many zip codes),

and zip codes with more individuals from one group tend to have higher rates of a private feature

(e.g. car ownership), then ecological inference frameworks estimate the fraction of individuals from

each group with that private feature, within each aggregate unit (e.g. the number of white and

non-white car owners). These estimates can greatly refine the existing aggregate knowledge.

Privacy norms lead to uncetainty due to aggregation, and while it may be incumbent upon

decision-makers to address this uncertainty to improve outcomes or avoid algorithmic bias, problems

that affect large populations may be intractable at the individual level of analysis. We propose

an approach that naturally decomposes the population into smaller aggregate units, making an
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inroad to the tradeoff between data pooling and tractability by utilizing shared information over

a population to refine individual-level parameters. Furthermore, we identify a setting in which

addressing this type of uncertainty does not substantially increase the computational complexity

of a resource allocation problem. We also explain how ecological inference reduces the uncertainty

space in a broader family of optimization problems, full treatment of which we leave to further

work.

In short, this paper aims to describe the value in resource allocation optimization of refining a

statistic like “number of car owners” to “numbers of Black car owners and non-Black car owners”,

both for the sake of improving outcomes overall and for avoiding unequal outcomes for racial groups.

2 Literature Review

2.1 Ecological Inference

To ensure privacy or simply to summarize, datasets concerning individuals’ features are almost

always made publicly available only in aggregate form. For example, the US Census reports averages

and total counts for individuals in a given census tract, census block group, or census block. An

individual’s name, address, age, racial group, and voting history (whether they voted, not how they

voted) are often available from US states in the form of “voter files”. So, for example, public data

in the US keeps private individual car ownership and income, but reports in aggregate the number

of car owners and the average income in the neighborhood around each individual.

“Ecological inference” attempts to use multiple statistics that are reported in aggregate to

infer individual-level correlations to answer questions like “how many Black individuals voted for

Democrats?” or “how many Black car-owners are out there?” In this literature, an “ecological

correlation” is a correlation (in the usual sense) between the aggregate statistics sampled over

many aggregations.

For example, in the classic example, election precincts with high Democratic voting rates may

have high numbers of Black individuals: a positive correlation may exist between the aggregate

statistics “fraction of Black individuals” and “fraction voted Democratic”, both of which are publicly

available. That positive correlation, however, does not necessarily imply that Black individuals are

more likely to vote Democratic, an “individual-level correlation” between Blackness and Democratic

preference. Supopse there areN precincts, and precinct i has known percentage of democratic voters

Ti (democratic Turnout), as well as known fraction of Black voters Xi (eXplanatory variable).

Ecological attempts to predict the “individual-level correlations”: the fraction of Black and non-

Black individuals who voted Democratic, represented by βBi and βwi , respectively. In other words,

the inner cells in Table 1 are inferred from many samples of the marginal cells:
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Voted Democratic
Yes No Tot:

Race
Black βBi 1− βBi Xi

Non-Black βwi 1− βwi 1−Xi

Tot: Ti 1− Ti 1

Figure 1: A two-way (or “four-fold”) table describing the relationship between known aggregate-level statis-
tics and unknown individual-level statistics/parameters. Xi represents the (known) fraction of
voting age people in district i who are Black, Ti represents the (known) fraction of people in
district i who voted Democratic, and βB

i and βw
i represent the (unknown) fraction of Black and

white people who vote Democratic, respectively.

If an ecological correlation exists in the absence of an individual-level one, or vice-versa, it is

known as “aggregation bias”, which implies that the groupings defined by the aggregation process

(e.g. grouping by geographic proximity) are more informative of individual-level correlation than

the aggregate features are. Ecological inference typically begins with an assumption regarding a

limit to (or entirely the absence of) aggregation bias. Ecological inference has had successes in

different domains, mostly related to social science and election analysis; there are several existing

inference frameworks, each of which makes different assumptions about aggregation bias, and each

of which has motivating advantages and disadvantages within different domains.

The concept of ecological inference was introduced in the 1950s [29], extended slightly in the

1970s [31, 18, 9], and then not largely ignored until the work of Gary King beginning in 1997 [21, 23],

which combined existing regression techniques with a treatment of the fact that individual-level

correlations can be deterministically bounded for each aggregate sample. Applications of these

methods appear in recent work in various domains, such as [25].

We leave it to other work (such as [20]) to describe the limitations of ecological inference.

Beyond the deterministic bounds the method generates, it is impossible to know how reliably

accurate ecological inferences are for data in any domain. The only datasets for which the efficacy

of ecological inference can be evaluated are those for which the individual-level correlations are

already known (and thus inference is unnecessary). Still, like other popular statistical methods,

successesful application in various domains ultimately gauges the usefulness of these methods.

2.2 Differential Privacy and Prevalence of Aggregate Data

It is not a historical coincidence that so much useful social science data is presented in the aggregated

form described in the previous section. The field of differential privacy studies the mathematical

requirements for presenting data regarding individuals in such a way that information about any one

individual cannot be precisely inferred. The essential toolkit to differential privacy is aggregation

along with introduction of noise [13, 17, 15]. Without either of these components, a tool such

as ecological inference could discover correlations that reveal more about the population in the

aggregate data than the individuals involved agreed to release (though even in a setting that is

insufficiently differentially private may permit such revelation [14]).

Anonymized datasets that are not differentially private have been particularly influential both

as benchmarks in the advancement of classification and machine learning algorithms, and as a
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raw ingredient in online advertising. Recently, however, the insufficiency of anonymization in “pri-

vate” datasets has been well-documented [2, 14, 26]. An example of a shift in attitudes towards

anonymization is the phasing out of anonymized third-party cross-site “cookies” in web browsing; a

recent effort to replace these with “federated learning of cohorts” essentially gives advertisers access

not to individual-level (anonymized) browsing histories, but to the aggregate browsing histories of

cohorts of several hundred or thousand “similar” users.

Whether a dataset guarantees a level of differential privacy or not, aggregation is the nearly

ubiquitous resolution to the problem of sharing data without conceding privacy. It is possible that

as privacy norms shift, so too will the classification algorithms that are the lifeblood of the internet

ecosystem, and a proliferation of aggregate datasets from sources other than the US Census will

fuel the social sciences for years to come, making ecological inferences increasingly necessary and

appealing.

2.3 Fairness

It has been recently well-documented [12, 10] that excluding protected features of individuals from a

model (“anti-classification” in [10]) does not preclude discrimination via that model. The consensus

alternative in the literature can be thought of as “fairness through awareness,” as in the eponymous

[12], which is to treat group membership explicitly to achieve an objective fairness goal.

Most efforts towards algorithmic fairness are in the context of classification algorithms, which can

be thought of as basic resource allocation problems in which individuals with uncertain parameters

are the unit of analysis (and their label assignments are the “resources”). Even in this most basic

resource-allocation setting, consideration of uncertain individual-level to avoid algorithmic bias

often yields difficult numerical optimization problems [39, 40, 16, 19, 24, 37, 38]. Little work has

been done to incorporate fairness into the ubiquitous resource allocation optimization problems in

Operations Research (though [8] is a good start, and [34] does so in the limited context of fairness

as “equality” without group membership), and indeed the computational expense of incorporating

fairness concerns into even a basic classification problem may explain this. There are mature

methods, on the other hand, to evaluate whether an outcome is fair after the event, as in [5] [11].

While consideration of uncertainty in individual-level features may broadly enable fairness-

inducing optimization strategies, simply treating these uncertain features accurately (to the extent

possible) may naturally reduce algorithmic bias, as will be demonstrated in Section 3.7, by improv-

ing outcomes for members of a group with systematically higher costs, and therefore reducing the

between-group disparity in outcomes.

2.4 Optimization Under Uncertainty

Many central resource planning problems are unavoidably NP-hard, suggesting that the individual

(rather than a coarser aggregation) is an ill-advised unit of analysis. Furthermore, optimization

problems are generally substantially complicated by considering uncertainty in model parameters.

In summary, it is challenging to include uncertain (private), individual-level features in an opti-
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mization model.

On the other hand, Operations Research has seen a proliferation of treatments of uncertainty

in optimization in the last two decades. Often robust convex optimization problems have efficient

reformulations [6, 35, 4, ?], stochastic optimization permits inexpensive yet accurate sample average

approximations [36], and even distributional robustness has seen tractable and effective treatments

[28, 7].

The running example in this work is a robust facility location problem. Numerous treatments

of facility location under uncertainty exist [1, 30, 32, 3, 27], and we hope that our future work will

connect extant sensitivity analyses of these problems with the type of uncertainty we attempt to

understand in this paper.

3 Optimization Model

The “individual” is our unit of analysis, and individuals have uncertain type (an unknown discrete

feature), and the problem parameters are functions of this type (and are therefore themselves

uncertain). While individual types are not known, it is known what number of individuals have

each type; furthermore, individuals may be partitioned into subsets (by a known discrete feature)

in each of which the number of individuals of each type are known. We explore in depth the value

of a single partition (known binary feature) of the individuals, and how to utilize this reduction of

uncertainty.

We describe a broad optimization setting in which this framework may be desirable, which we

then narrow to a specific problem type that we treat in depth and later associate with a real-world

problem. We discuss the advantages gained by a partition of the individuals both in this specific

problem and the broader setting.

3.1 Model of Uncertainty Set Ω

We are motivated by the idea that individuals with unknown “type” experience costs that are

functions of their type, where we know, in aggregate, how many individuals there are of each type,

but don’t know which individuals are which. We can think of individuals belonging to a “high-

cost type” as having a “disturbance” added to some low-cost “nominal” parameter. We return

to the model of individuals later in Section 3.4, and for now discuss the more general (and less

cumbersome) setting in which nominal cost vectors are added to a known number of “disturbance”

cost vectors.

Suppose c is an uncertain parameter from the uncertainty set {cω : ω ∈ Ω}. To specify a

resolution of cω, we introduce the binary vector w and the possible disturbances ci, i = 1, . . . , nc to

the nominal value c0. Similar to the framework introduced in [6], we consider an integer “budget”
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of uncertainty Γc. The uncertainty set consists of all the folowing:

cω ∈

{
c :

c = c0 +
∑nc

i=1 wici∑nc

i=1 wi ≤ Γc

wi ∈ {0, 1}

 (1)

In other words, cω is subjected to at most Γc disturbances from its nominal value c0, and dω is

subjected to at most Γd

We also introduce another uncertain vector, d ∈ {dω : ω ∈ Ω}, which appears in the model in

the next section, but whose uncertainty, we will demonstrate in Section 3.3, can be omitted from

the model without loss of generality:

dω ∈

{
d :

d = d0 +
∑nd

i=1 zidi∑nd

i=1 zi ≤ Γd

zi ∈ {0, 1}

 (2)

3.2 Multi-Stage Problem

Our approach is broadly relevant to two-stage optimization problems in which there is uncertainty

in the objective:

fouter(y) +RΩ[Qω(y)], (3)

Qω(y) = min
x∈X

{
f innerω (x, y) |g(x, y) ≤ b

}
where ω ∈ Ω denotes a resolution of the uncertainty (a “scenario”) from the set Ω, and R is

an operator that defines the desired response to uncertainty, such as RΩ[·] = maxω∈Ω[·] (robust

optimization) or, when Ω is associated with a probability meassure, RΩ[·] = Eω∈Ω[·] (stochastic

optimization).

We propose an approach for problems distinguished by the nature of their uncertainty set, rather

than a specific optimization methodology. A robust formulation has a straightforward solution that

aligns with our motivation to focus on the nature of the uncertainty (rather than on a solution

algorithm), and to avoid a “worst case” of algorithmic bias. So, for the remainder of this work, we

focus our attention on the robust mixed-integer linear program

min
y∈Y

dT0 y + max
ω∈Ω

[Qω(y)] (4)

Qω(y) = min
x∈X

{
cTωx+ dTωy |Ax+By ≤ b

}
where Y = {y ≥ 0 : yj ∈ Z ∀ j ∈ J} (J consists of indices of integer-constrained components of y),

and X = {x : x ≥ 0}. We also assume that cω and dω have all positive components, for all ω ∈ Ω

for simplicity.

The form of problem (3) is extremely general, whereas the problem (4) is linear and has uncer-

tainty only in costs, and is straightforward to analyze. In our case, it reduces to a mixed integer
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linear program.

Note that this optimization model distinguishes between the decision variables x and y by the

fact that x represents decisions that have recourse after uncertainty has been resolved, whereas

y represents decisions that are made before uncertainty has been resolved. This distinction is in

general meaningful in optimization settings subsumed by formulation (3), but we shall see that in

the robust linear program (4), recourse does not play a role, and so the variable y will eventually

come to have a different meaning.

3.3 Solving and Simplifying the Robust Model

We can simplify the description of uncertainty in (1) for our purposes by reformulating the robust

optimization problem (4) in a way that makes it clear that x and y - variables differentiated by

the fact that decisions represented by x are recourse after uncertainty has been resolved - end up

analytically equivalent, as the order of optimization and realization of uncertainty does not turn

out to matter.

Combining the problem (4) and the model of uncertainty (1), we end up with a robust optimiza-

tion problem that reduces to a linear program. The problem can be written explicitly as follows:

min
y

max
w,z

min
x

cT0 x+ dT0 y +

nc∑
i=1

wic
T
i x+

nd∑
i=1

zid
T
i y

s.t. Ax+By ≤ b
nc∑
i=1

wi ≤ Γc

nd∑
i=1

zi ≤ Γd

0 ≤ wi ≤ 1 ∀ i = 1, . . . , nc

0 ≤ zi ≤ 1 ∀ i = 1, . . . , nd

x, y ≥ 0

yj ∈ {0, 1} ∀ j ∈ J,

(5)

where J denotes the set of indices in y that are binary-constrained. This problem reduces to

min
x,y,ρc,ρd

cT0 x+ dT0 y + Γcρd + Γdρd +

nc∑
i=1

(cTi x− ρc)+ +

nd∑
i=1

(dTi y − ρd)+

s.t. Ax+By ≤ b
ρc, ρd ≥ 0

x, y ≥ 0

yj ∈ {0, 1} ∀ j ∈ J.

(6)

Note that the coefficients of the variables x and y in equation (6) have the same exact, symmetrical

structure, even though x is optimized after the uncertainty is resolved and y is optimized before the

uncertainty is resolved. In other words, optimal decisionmaking in anticipation of the resolution

of uncertainty and in response to that resolution are in this case equivalent. As a consequence, the
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following formulation is equivalent to (6), which demonstrates that the uncertainty budgets Γc and

Γd need not make the distinction in this case between variables with recourse over uncertainty and

those without:
min
y

max
w,z

min
x

. . .

s.t. . . .
=

min
x,y

max
w,z

. . .

s.t. . . .

in which neither decisions represented by y nor those represented by x have recourse over un-

certainty. So, in the context of the robust linear program with recourse (4), we need not make

a distinction between a variable x with recourse and a variable y without recourse, i.e. we can

combine the “inner” and “outer” variables so that there are only “outer” variables

y′ =

[
x

y

]
, d′ω =

[
cω

dω

]
, B′ =

[
A B

]
Y ′ =

{
y

[
x

y

]
: x ∈ X, y ∈ Y

}

and can equivalently write the “min max min” problem without recourse.{
miny∈Y d

T
0 y + maxω∈Ω[Qω(y)]

Qω(y) = minx∈X
{
dTωy + cTωx |Ax+By ≤ d

} } =

{
miny′∈Y ′ maxω∈Ω d

′T
ω y
′

s.t. B′y′ ≤ d

}
.

Now we make a different distinction between two subsets of decision variables x and y (rather

than “with” and “without” recourse, respectively): those whose cost coefficients do and don’t have

uncertainty associated with them. We retain the convention that some variables may have integer

constraints, and in particular we restrict interest to the case where only variables without uncertain

coefficients can have integer constraints. This is motivated by the source of uncertainty being

unknown individual-level features in an assignment problem in which y represents global decisions

and, for any fixed value of y, x dictates what amounts to a min-cost flow. We again use the

symbols x and y, but this time they correspond to variables with and without uncertain coefficients,

respectively. The resulting model, in which there are n possible disturbances to the nominal cost

c0, is the following mixed-integer nonlinear program:

min
x∈X,y∈Y

max
w

cT0 x+ dT0 y +
n∑
i=1

wic
T
i x

s.t. Ax+By ≤ b
n∑
i=1

wi ≤ Γ

0 ≤ wi ≤ 1 ∀ i = 1, . . . , n

x, y ≥ 0

yj ∈ {0, 1} ∀ j ∈ J,

(7)
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whose solution can be found by solving the following mixed-integer linear program:

min
x∈X,y∈Y,ρ

cT0 x+ dT0 y + Γρ+

n∑
i=1

(cTi x− ρ)+

s.t. Ax+By ≤ b
ρ ≥ 0

x, y ≥ 0

yj ∈ {0, 1} ∀ j ∈ J.

(8)

An Optimality Condition

In the single-group robust formulation (8), for a fixed value of x, the optimal value of ρ can be

described in terms of the order statistics of the values {cTi x, i = 1, . . . , n}. First, note that a value

of x induces an ordering c[i|x] on ci, i = 1, . . . , n such that

cT[1|x]x ≥ c
T
[2|x]x ≥ . . . ≥ c

T
[n1|x]x.

Then the optimal values of ρ will take on the value ρ∗ = cT[Γ|x∗]x
∗. This is because the marginal

increase in the objective function for a marginal increase in ρ is

∂

∂ρ
cT0 x+ dT0 y + Γρ+

n∑
i=1

(cTi x− ρ)+ = Γ−
n∑
i=1

1cTi x−ρ≥0.

So, the optimality condition ∂
∂ρ = 0 when ρ = ρ∗ implies that

Γ =

n∑
i=1

1cTi x−ρ∗≥0

= |{i : cTi x ≥ ρ∗}|.

Since any increase in ρ beyond that point will increase the value ∂
∂ρ to be positive (and thereafter

increase the objective function), we know that ρ∗ will take on the value of cT[Γ|x∗]x
∗. This is an

optimality condition for problem (8).

This optimality condition reflects the fact that in the primal formulation (7), the variables wi

maximize the sum of the Γ largest costs (single-group).

3.4 Facility Location with Uncertain Individual Cost Types

Each individual has an unknown binary type and a known binary type. The known type denotes

“group membership”: individuals with known type 1 type are in group 1, etc., and group member-

ship is observable. The unknown type denotes the individual’s private “cost type”: individuals with

the higher cost type experience higher costs, reflected by greater cost coefficients in the objective

function of an optimization problem. We know how many individuals have the high cost type, but

we do not know which individuals those are. Here, we treat only the cost type of individuals in
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a “single-group” problem setting; later, in Section 3.6, we introduce the group membership as a

“partition” of the population of individuals.

Let I now denote the set of individuals. The collision with the previous use of I to denote a set

of disturbances to nominal costs is intentional, as those disturbances will now be associated with the

resolving of private features of individuals. We have restricted the uncertainty in the model to cost

coefficients of decision variables in the vector labeled x (while decisions represented by the vector

y have known coefficients), and we retain this structure by specifying that decisions represented by

x have associated costs that depend on individuals’ cost types.

Let the indices of individuals with the “high cost type” be represented by the set Ĩ ⊆ I. For

each i ∈ I, the vector xi ≥ 0 corresponds to decisions that determine the outcome for individual

i; the vector x contains all these decision variables. The vector y corresponds to decision variables

that do not relate specifically to one individual, and cost coefficients of y do are not uncertain.

To ground the discussion in a tangible example, we use a capacitated facility location problem

in which the goal is to locate m new facility locations from the index set J , within which J0 ⊂ J
denotes facilities that already exist. For each facility location index j, there is a cost dj associated

with that location, as well as a capacity bj such that no more than bj individuals can be assigned

to that location.

Each individual must be assigned to exactly one facility, and each assignment of individual i to

facility j has associated cost c0ij plus an extra cost (“disruption”) cij if individual i has the private

high-cost type. The robust formulation assigns facilities so that in the worst possible realization of

cost types, the cost is minimized.

As a running example, we can think of the known group-membership type as “race” and the

private cost type as “car ownership”. This is motivated by the fact that in many states, individ-

uals’ addresses and race are publicly available through “voter files” compiled by election officials,

whereas car ownership (a vital parameter in a spatial optimization problem) is only available via

the aggregate statistics provided by the US Census. The method for inferring the number of car

owners in each racial group (a quantity leveraged in Sections 3.5 and 3.6) is described in Section

2.1.

min
∑
j∈J

djyj +
∑
i∈I

∑
j∈J

c0ijxij + max
Ĩs.t.
|Ĩ|≤Γ

∑
i∈Ĩ

∑
j∈J

cijxij


s.t.

∑
i∈I

xij ≤ bjyj ∀ j ∈ J∑
j∈J

yj ≤ m+ |J0|∑
j∈J

xij = 1 ∀ i ∈ I

yj = 1 ∀ j ∈ J0

xij ≥ 0 ∀ i ∈ I, j ∈ J
yj ∈ {0, 1} ∀ j ∈ J .

(9)

It should be clear that this problem has the structure of formulation (7), and so it has the same
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mixed integer linear programming reformulation as in (8):

min
x,y,ρ

∑
j∈J

djyj + Γρ+
∑
j∈J

c0ijxij +
∑
i∈I

−ρ+
∑
j∈J

cijxij

+

s.t.
∑
i∈I

xij ≤ bjyj ∀ j ∈ J∑
j∈J

yj ≤ m+ |J0|∑
j∈J

xij = 1 ∀ i ∈ I

yj = 1 ∀ j ∈ J0

xij ≥ 0 ∀ i ∈ I, j ∈ J
ρ ≥ 0

yj ∈ {0, 1} ∀ j ∈ J .

(10)

The following table summarizes the connections between the running example and the general

optimization framework:

General Optimization Setting Facility Location Problem

Indices for Disturbances I contains the indices of pos-

sible disturbances to nominal

costs.

I indexes all individuals, each

of whom may experience the

“disturbance” of having the

high cost private type.

Total Number of Distur-

bances

n = |I| denotes the number of

possible disturbances to nom-

inal costs.

n = |I| is the total number of

individuals.

Disturbances {ci : i ∈ I} are extra

costs that may be experienced

above the nominal cost c0.

{ci : i ∈ I} are the extra

costs for each individual of

the “high cost” type defined

by a private binary feature

(e.g. car ownership).

Number of Disturbances Re-

alized in Each Scenario

Γ is the number of cost distur-

bances that it is known will be

experienced in a ground-truth

resolution of uncertainty.

Γ is the (known) total number

of individuals of the high cost

type.

3.5 Partitioning the Uncertainty Budget

In the setting we are developing, “worse outcomes” for a group correspond to higher costs for their

individuals. On the other hand, higher coefficients in an objective function assign a higher weight

or “priority” to their variables: in general, all else being equal, raising a cost coefficient reduces the

optimal value of a variable, at the cost of increasing costs associated with other variables. If an

optimization model’s coefficients reflect higher costs for individuals in one group, then the variables
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associated with members of that group are in effect given higher “weight” in the model, and the

corresponding individuals will, to an extent, be assigned better outcomes than they would otherwise

(even if they are still worse outcomes than individuals in the other group experience). Thus, any

effort to capture in an optimization model the true higher costs experienced by one group will serve

to improve their outcomes in the solution.

Efforts to improve outcomes for groups with systematically worse outcomes can be character-

ized as “affirmative action” when an exogenously-determined resource allocation is devoted to that

group. In contrast, improved accuracy in model parameters (to reflect true higher costs for one

group) endogenously determine a level of effort (via higher coefficient weights) towards improv-

ing outcomes for that group. As mentioned in Section 2.3, we aim to achieve “fairness through

awareness”. We ultimately seek to avoid algorithmic bias by addressing unobserved cost disparities

between groups whose membership is known.

Recall the setting mentioned in Section 3.1 of considering both known individual-level features

and private ones that are only observed through aggregation. We refer to individuals sharing the

same known individual-level feature as a “group”, and define “between-group” bias as a disparity

in outcomes for individuals in the two groups. It is possible that in some cases, due to existing

differences in parameters corresponding to individuals in two groups, individuals in one group will

have measurably worse outcomes in any feasible solution to a problem. We motivated a desire for

“fairness” in Section 2.3.

The idea of an uncertainty “budget” Γ in an optimization model has been a successful tool

(beginning with [6]) to understand the tradeoff between conservatism towards extreme scenarios in

uncertainty space and average or nominal performance of an optimization model. In our model,

on the other hand, Γ corresponds to a level of uncertainty derived directly from aggregated data

representing private individual-level features (as described in Section 2.1).

We return to the model (7) and its simplified mixed-integer linear form (8). Let I = {1, . . . , n}
denote the set of indices for the uncertain “disturbances” to the nominal cost c0, of which at most

Γ are considered in the optimization (I will come to index individuals in the next section). Now

suppose we partition I = I1 t I2, where n1 = |I1|, n2 = |I2|, n1 + n2 = n = |I|, as well as the

uncertainty budget Γ = Γ1 + Γ2, where Γ1 ≤ n1,Γ2 ≤ n2. As long as n1, n2 > 0, the number

of possible “scenarios” in which uncertainty resolves is considerably reduced by only considering

those in which the number of disturbances ci, i ∈ I1 is at most Γ1 and the number of disturbances

ci, i ∈ I2 is at most Γ2. Namely, scenarios respecting the partitioned structure are always possible

in the single-group formulation, but many in the single-group formulation are not included in the

partitioned formulation.
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The “partitioned” formulation yields the following optimization problem:

min
x∈X,y∈Y

max
w

cT0 x+ dT0 y +
∑
i∈I1

wic
T
i x+

∑
i∈I2

wic
T
i x

s.t. Ax+By ≤ b
n∑

i∈I1

wi ≤ Γ1

n∑
i∈I2

wi ≤ Γ2

0 ≤ wi ≤ 1 ∀ i = 1, . . . , n

x, y ≥ 0

yj ∈ {0, 1} ∀ j ∈ J,

(11)

whose solution can be found by solving the following mixed-integer linear program:

min
x∈X,y∈Y,ρ1,ρ2

cT0 x+ dT0 y + Γ1ρ1 + Γ2ρ2 +
∑
i∈I1

(cTi x− ρ1)+ +
∑
i∈I2

(cTi x− ρ2)+

s.t. Ax+By ≤ b
ρ1, ρ2 ≥ 0

x, y ≥ 0

yj ∈ {0, 1} ∀ j ∈ J.

(12)

To summarize the difference between the “single-group” and the “partitioned” models is sum-

marized by the following:

Single-Group Problem Partitioned Problem

Indices for Disturbances I I1 t I2 = I
Total Number of Disturbances n = |I| n1 = |I1|, n2 = |I2|
Disturbances {ci : i ∈ I} {ci : i ∈ I1} t {ci : i ∈ I2}
Number of Disturbances Realized in

Each Scenario

Γ Γ1 + Γ2 = Γ.

By the above reasoning regarding scenarios included in the single-group versus the partitioned

formulation, it is clear that the optimal value of the partitioned formulations (11) and (12) is less

than or equal to the optimal value of the single-group formulations (7) and (8).

Similar to the optimality condition in Section 3.3 for the single-group formulation (8), in the

partitioned problem, the optimal solution will satisfy the condition

ρ∗1 = cT1[Γ1|x∗]x
∗

ρ∗2 = cT2[Γ2|x∗]x
∗.
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3.6 Facility Location with Two Groups and Groupwise Uncertainty Bud-

gets

We grounded the general robust optimization setting (7) in a specific running facility location exam-

ple (9). In the previous section, we treated the known group membership types via a partitioning

of the uncertainty set, resulting in the “partitioned” formulation (11). We introduce the same

partitioning (by group membership) to the facility location problem (9) to yield the following

min z1 + z2

s.t. z1 =
∑
i∈I1

∑
j∈J

c0ijxij + max
Ĩ1s.t.

|Ĩ1|≤Γ1

∑
i∈Ĩ1

∑
j∈J

(cij − c0ij)xij


z2 =

∑
i∈I2

∑
j∈J

c0ijxij + max
Ĩ2s.t.

|Ĩ2|≤Γ2

∑
i∈Ĩ2

∑
j∈J

(cij − c0ij)xij

∑
i∈I

xij ≤ bjyj ∀ j ∈ J∑
j∈J

yj ≤ m+ |J0|∑
j∈J

xij = 1 ∀ i ∈ I

yj = 1 ∀ j ∈ J0

xij ≥ 0 ∀ i ∈ I, j ∈ J
yj ∈ {0, 1} ∀ j ∈ J .

(13)

In the same way that partitioned problem formulation (11) is equivalent to the MILP (12), the

partitioned facility location problem (13) is equivalent to the following:

min z1 + z2

s.t. z1 = ρ1Γ1 +
∑
j∈J

c0ijxij +
∑
i∈I1

−ρ1 +
∑
j∈J

(cij − c0ij)xij

+

z2 = ρ2Γ2 +
∑
j∈J

c0ijxij +
∑
i∈I2

−ρ2 +
∑
j∈J

(cij − c0ij)xij

+

∑
i∈I

xij ≤ bjyj ∀ j ∈ J∑
j∈J

yj ≤ m+ |J0|∑
j∈J

xij = 1 ∀ i ∈ I

yj = 1 ∀ j ∈ J0

xij ≥ 0 ∀ i ∈ I, j ∈ J
ρ1, ρ2 ≥ 0

yj ∈ {0, 1} ∀ j ∈ J .

(14)
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The following table summarizes the connections between the running example and the general

optimization framework within the context of the partitioned population:

General Optimization Setting Facility Location Problem

Indices for Disturbances I1 t I2(= I) contain the in-

dices of possible disturbances

to nominal costs, partitioned

into two subsets.

I1 t I2(= I) contain the

indices of all individuals in

two groups defined by an ob-

servable“group membership”

type (e.g. race).

Total Number of Distur-

bances

n1 = |I1| and n2 = |I2| de-

notes the total number of pos-

sible disturbances to nominal

costs in each subset.

n1 = |I1| and n2 = |I2| de-

notes the number of individu-

als in the two groups defined

by observable type (e.g. num-

ber of individuals from each

racial group).

Disturbances {ci : i ∈ I1}t{ci : i ∈ I2} are

the extra costs that may be

experienced above the nomi-

nal cost c0, partitioned into

two subsets.

{ci : i ∈ I1} t {ci : i ∈ I2}
are the extra costs for each

individual of the “high cost”,

partitioned by group member-

ship.

Number of Disturbances Re-

alized in Each Scenario

Γ1 +Γ2(= Γ) are the numbers

of cost disturbances from each

subset that it is known will be

experienced in a ground-truth

resolution of uncertainty.

Γ1 + Γ2(= Γ) are the (known)

total numbers of individuals

of the high cost private type

from each of the groups (e.g.

the known number of car own-

ers within and without a given

racial group).

3.6.1 Probability of Improvement Given Identically Distributed Parameters

Note that the single-group and partitioned models share all parameters except for the partition

itself. That is, the constraint matrices A and B, the base costs c0 and d0, and the cost distur-

bances c1, . . . , cn are the same. Now consider the idea that these parameters are generated from a

distribution such that the c1, . . . , cn are independently and identically distributed, and such that

the partitioning of these disturbances I1 t I2 = I, and the partitioning of the uncertainty budget

Γ1 + Γ2 = Γ is a random partitioning (subject to Γ1 ≤ n1 = |I1| and Γ2 ≤ n2 = |I2|) in which all

possible partitionings are equally likely. In this setting, the only systematic difference between the

two groups I1 and I2 is their uncertainty budgets Γ1 and Γ2. Also suppose that the ci parameters

are generated from a continuous distribution so that there is zero probability of any two sharing an

equal inner product with any vector x: that is, for any given value of x, {cT1 x, . . . , cTnx} constitutes

a set of n distinct real numbers.

It is then possible to answer the question, “What is the probability that the partitioned problem

15



actually has optimal cost that is exactly as high as the single-group problem?” The objective of

the single-group problem contains the term

Γ∑
i=1

cT[i|x]x, (15)

and we recall the definition cT[1|x]x ≥ . . . ≥ cT[Γ|x]x ≥ . . . ≥ cT[n|x]x. The objective of the partitioned

problem contains the term
Γ1∑
i=1

cT1[i|x]x+

Γ2∑
i=1

cT2[i|x]x, (16)

and we recall that cT1[1|x]x ≥ . . . ≥ cT1[Γ1|x]x ≥ . . . ≥ cT1[n1|x]x and cT2[1|x]x ≥ . . . ≥ cT2[Γ2|x]x ≥ . . . ≥
cT2[n2|x]x. Furthermore, the cost vectors are the same ones, partitioned into two groups:

{c1, . . . , cn} = {c11, . . . , c1n1} t {c21, . . . , c2n2}.

By assumption the set {cT1 x, . . . , cTnx} consists of n distinct real numbers, and so the only possible

way for the sum of the Γ1 cost terms with indices in I1 and the Γ2 cost terms with indices in I2

that yield the order statistics in expression (16) to yield the same sum as in expression (15) is for

the exact same cost vectors to be represented in the single and partitioned sums of order statistics.

There are
(

Γ
Γ1

)
=
(

Γ
Γ2

)
total ways to partition the Γ cost vectors whose inner products with a

value of x have the highest order statistics into two subsets of size Γ1 and Γ2. On the other hand,

in total there are 2Γ total ways to distribute these cost vectors into two subsets such that any

number of them are in each of the two subsets (we assume that n1, n2 > Γ for simplicity - otherwise

the result is not so much different). Thus, the probability of the partitioned problem having an

objective value that is as costly as the objective value of the single-group problem is(
Γ
Γ1

)
2Γ

.

This value is in general low, and it is highly unlikely that the partitioning does not yield an increase

in objective value. That is, the less conservative uncertainty set is highly likely to yield a lower

objective value (and therefore an objective value that is closer to the objective value of the problem

in which the ground-truth costs are all known, of which the robust formulation is always an over-

estimate).

3.7 The Uncertainty Space Before and After Partitioning the Uncerat-

inty Budget

We model the variables wi, which resolve the uncertainty in (1), as continuous rather than discrete

because the resulting optimization model is equivalent with this slightly less constrained setting:

optimal values of wi will be binary in the optimization problems (7) and (11). However, our

interest is in discrete “disturbances” to nominal costs, and by considering the uncertainty space Ω
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in which the uncertainty-resolving variables wi only do take on discrete values, we can articulate

some advantages to the partitioning in the formulation in the previous Section 3.5. The uncertainty

space Ω consists of all feasible binary assignments to all of the wi variables, and so the uncertainty

space itself is discrete.

We refer to one element of the uncertainty set as a possible “scenario”. This terminology is

commonly associated with stochastic optimization, rather than robust optimization, but our model

of uncertainty is relevant to both these types of problems, as is articulated in Section 3.2. So, by

reducing the uncertainty in the model via partitioning, we reduce the conservatism of the model (in a

typical robust optimization sense), and we also reduce the number of possible scenarios (in a typical

stochastic optimization sense). We also discuss the extent to which parameters are “accurate” in a

randomly selected scenario, a notion that may only be relevant to stochastic optimization.

For one, the partitioning of the uncertainty budget restricts the total number of possible config-

urations in which uncertainty can resolve. Before partitioning, there are
(
n
Γ

)
total possible scenarios

in which uncertainty can resolve. After partitioning, there are
(
n1

Γ1

)(
n2

Γ2

)
possible scenarios in which

uncertainty can resolve.

Perhaps more interestingly, the expected number of “correct” parameters in a randomly selected

scenario increases as a result of the partitioning, as discussed in the next section.

3.7.1 Correct Parameters in a Randomly Selected Scenario

In the single-group model of uncertainty, there are Γ “true” cost disturbances from among n possi-

bilities. By randomly selecting some Γ cost disturbances from among n, the number of “correctly”

selected disturbances follows a hypergeometric distribution, with expected value Γ2/n.

Now we consider the case then the true uncertainty space consists of all scenarios in which there

are exactly Γ1 “true” disturbances from the first n1 = |I1| possibilities, and exactly Γ2 from the

other n2 = |I2| possibilities. In this case, we can compare the (partitioned) optimization model that

reflects this uncertainty space, versus the single-group optimization model that does not distinguish

between the two groups.

First, we define X = |I1|
n , (1−X) = ‖I2|

n denote the fractions of disruptions in the two partitions

I1 and I2, T = Γ
n denote the total fraction of “correct” disruptions, and we let β1 = Γ1

n1
, β2 = Γ2

n2

denote the fraction of “correct” disruptions in the two partitions.

Define a randomly selected scenario in the “Single Group Problem” setting as one in which Γ

disruptions are selected at random from among all n of the possible disruptions. Define a randomly

selected scenario in the “Partitioned Problem” setting as one in which Γ1 disruptions are selected at

random from among all n1 possible disruptions with indices in I1, and Γ2 disruptions are selected

at random from among all n2 possible disruptions with indices in I2.

The following table gives the expected number of “correctly-identified” disturbances in a ran-

domly selected scenario in both problem settings. That is, the expected number of indices i such

that the cost ci is a true cost in both the real system represented by the model and in a given

scenario randomly-selected from the uncertainty space.
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Single-Group Problem Partitioned Problem

Mtot = E[# correctly identified]

M1
tot =

Γ2

n

= (β1X + beta2(1−X))2n

M2
tot =

Γ2
1

n1
+

Γ2
2

n2

= (β2
1X + β2

2(1−X))n

M1 = E[# correctly identified and in I1]

M1
1 = Γ1

Γ

n

= β1XTn

M2
1 =

Γ2
1

n1

= β2
1Xn

M2 = E[# correctly identified and in I2]

M1
2 = Γ2

Γ

n

= β2(1−X)Tn

M2
2 =

Γ2
2

n1

= β2
2(1−X)n

This implies the following ratios, which express the advantages of using the “Partitioned Prob-

lem” that reflects the reality of the two groups indexed by I1 and I2:

• M2
1

M1
1

= β1

T

(
= # correctly identified disturbances in partitioned problem setting

# correctly identified disturbances in single-group problem setting

)
• M2

2

M2
2

= β2

T

(
= # correctly identified disturbances indexed by I1 in partitioned problem setting

# correctly identified disturbances indexed by I1 in single-group problem setting

)
• M2

tot

M1
tot

=
β2
1X+β2

2(1−X)
(β1X+β2(1−X))2

(
= # correctly identified disturbances indexed by I2 in partitioned problem setting

# correctly identified disturbances indexed by I2 in single-group problem setting

)
Note that when β1 = β2, we also necessarily have β1 = β2 = T , and this implies that

M2
tot

M1
tot

= 1.

That is, when there are no differences between groups I1 and I2 in terms of frequency of a “true”

disturbance among the possible disturbances indexed by the two sets, then there is no advantage

overall to the number of correctly-identified disturbances.

4 Conclusion

In many centralized decisionmaking settings, the only information about the individuals affected

is gleaned through aggregate datasets. Still, as computational capacity and the demand for au-

tomation increases, it is difficult to resist considering the individual as the unit of analysis in

optimization. Aggregation yields a well-defined uncertainty structure, and existing methods from

robust and stochastic optimization can effectively treat this uncertainty, as we demonstrate.

All automated decisionmaking is prone to algorithmic bias via inequality in outcomes for mem-

bers of different groups. If the individual is to be the unit of analysis in centralized decisionmaking,

there are more opportunities to ask what information is known about each individual, and what

information we can infer. To the extent that an inference procedure can estimate individual-level
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features, and to the extent that a treatment of those features can prevent algorithmic bias, it

becomes imcumbent upon decisionmakers to do so.

Aggregation is not just a ubiquitous, but a fundamentally important ingredient of privacy. As

data availability increases alongside maturing privacy mechanisms, it is possible that decisionmakers

will increasingly have access to valuable yet aggregated data about the individuals whom their

decisions affect. Ecological inference not a widely used framework outside of the social sciences,

and yet it is extremely well-suited to refining uncertain knowledge of individual features in this

setting.

This paper takes an agnostic approach to the ecological inference procedure used, and in fact only

analyzes the process of analyzing before and after perfectly accurate ecological inferences have been

obtained. In reality, several different assumptions regarding aggregation bias have been proposed,

all which lead to slightly different ecological estimate procedures with different standard errors that

depend on the true aggregation bias. To truly test the efficacy of an ecological inference procedure

viz a viz an optimization model, it is necessary to already have access to the individual-level data

that is being estimated. We look forward to future work that utilizes such data to test the efficacy

of existing ecological inference techniques, and to incorporate the the errors in the estimates into

an optimization setting.
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