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1 Introduction

In general, ecological inference refers to the process of gleaning information regarding the distri-
ubtion of individual-level features from aggregate-level statistics (historically known as ecological
statistics). Of course, often an aggregate-level statistic is in fact sufficient regarding inference of the
distribution of individual-level features; for example, for many distributions, a sample mean is suffi-
cient for estimating a population mean. The term ecological inference is therefore typically reserved
for the special case of inferring the joint distribution between individual-level binary features from
aggregate measurements of those features (i.e. sample proportions). When inappropriate inferences
are drawn from aggregate measurements regarding individual features, one is succumbing to the
ecological fallacy

For binary features with known marginal distributions, knowledge of the joint distribution is
equivalent to knowledge of any of

• the covariance,

• the correlation, or

• the conditional distribution

of these features. LetX and Y have known marginal distributionsBernoulli(pX) andBernoulli(pY ),
respectively, then

Cor(X,Y ) = 1
σXσY

Cov(X,Y )

= 1
σXσY

(E(XY )− EXEY )

= 1√
pX(1− pX)pY (1− pY )

( P (XY = 1)︸ ︷︷ ︸
=P (X=1|Y =1)pY

=P (Y =1|X=1)pX

−pXpY ).

Throughout the literature, this problem is most frequently analyzed via the unknown conditional
probability P (X = 1|Y = 1), which we will refer to as pX|Y . Several motivating examples will be
given in Section 2, but the most common example of such a conditional probability is “probability
of voting while Black”. The term ecological correlation is used almost interchangeably with this
conditional probability due to the above equivalence of information for binary variables, and in this
section we will mostly analyze correlation rather than conditional probability.

The fundamental challenge of ecological inference, aggregation bias, is defined in [5] as:

This is the effect of the information loss that occurs when individual-level data are aggregated
into the observed marginals. The problem is that in some aggregate data collections, the type
of information loss may be selective, so that inferences that do not take this into account will
be biased.

At its core, the study of ecological correlation articulates the relationships between the following
individual- and aggregate-level quantities, taking into account aggregation bias:
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Individual Aggregate
Population Individual-Level, Population Parameters Aggregate-Level, Population Parameters

Sample Individual-Level, Sample Statistics Aggregate-Level, Sample Statistics

We will focus on the relationship between individual-level and aggregate-level (marginal) and
population parameters and sample statistics. The population parameters and sample statistics at
these levels have a relationship that is most easily described via a two-way table as follows.

• Population Parameters
X

= 1 = 0 Marginal:

Y
= 1 pXY p¬XY = pY − pXY pY

= 0 pX¬Y = pX − pXY p¬X¬Y = 1− pX − pY + pXY 1− pY

Marginal: pX 1− pX 1

Here, table entries denote joint probabilities and marginal probabilities fill the role of “ag-
gregate” data. In the work of Gary King (notably [5]), table entries often instead contain
conditional probabilities, which of course carry the exact same information (pX|Y = pXY

pY
, for

example).

• Sample Statistics
X

Aggregation A = 1 = 0 Marginal:

Y
= 1 ? ? p̂Y,A = ȲA

= 0 ? ? 1− p̂Y,A

Marginal: p̂X,A = X̄A 1− p̂X,A

Here, individual-level entries are written as “?” (a question mark) to emphasize that they
are not observed, whereas marginal statistics are observed. The label “Aggregation A” and
the subscripts with A (which will not typically be practical to include) are essentially indices
emphasizing that:

– Multiple aggregate-level samples are available. That is, data may be available as {(X̄A, ȲA) :
A = 1, . . . ,m},

– There is aggregation bias, and so (X,Y ) may not be independent of their grouping A.
The aggregation A is used as an index instead of the typical counting indices i or j
to emphasize that each observation of (X,Y ) is not randomly sampled from the same
population. This will be articulated in Section 1.2.

The quantities of interest are typically the joint (or conditional) population parameters (such
as pXY ), though sometimes the joint sample statistics themselves (denoted “?” above) are desired.
The quantities at hand are typically the aggregated sample statistics (such as X̄A).

The following sections explain when aggregation bias does and does not occur, and will introduce
some notation common in the literature.
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1.1 Ecological Correlation in Random Samples

Ecological inference is not a problem in general when aggregations are random samples. Suppose X̄
and Ȳ are random samples of X and Y in n individuals, which for the moment need not be binary,
with means and variances µX , µY , σ2

X , and σ2
Y . Then

Cor(X̄, Ȳ ) = 1
1√
n
σX

1√
n
σY

[
E(X̄Ȳ )− E(X̄)E(Ȳ )

]
= 1

1√
n
σX

1√
n
σY

[
E( 1

n2

n∑
i=1

Xi

n∑
i=1

Yi)− µXµY

]

= 1
1√
n
σX

1√
n
σY

 1
n2

n∑
i=1

n∑
j=1

E(XiYj)− µXµY


= 1

1√
n
σX

1√
n
σY

[
1
n2 (2

(
n

2

)
µXµY + nE(X1Y1))− µXµY

]
= 1

1√
n
σX

1√
n
σY

[
(1− 1

n
)µXµY + 1

n
E(X1Y1)− µXµY

]
= 1
σXσY

[E(X1Y1)− µXµY ]

= Cor(X,Y ).

This ensures that, given aggregate-level measurements X̄ and Ȳ from random samples, the correla-
tion between the individual-level features X and Y can be estimated by estimating the correlation
between X̄ and Ȳ . For example, a Pearson sample correlation calculated for sample proportions is
an estimator for individual correlation.

The rest of this report aims to explain the extent to which aggregate-level correlation does not
estimate individual-level correlation.

1.2 Treating Aggregation as a Feature

A natural but uncommon (and eventually cumbersome) articulation of this problem is that indi-
vidual i in the population has features (Xi, Yi, Ai), where Ai denotes the aggregation into which
they fall, and A 6⊥ (X,Y ) in general.

Let X̄A and ȲA be sample means (i.e. sample proportions) of the individual-level features X
and Y in aggregation A, i.e. X̄A estimates E(Xi|Ai = A) by the formula

X̄A = 1∑n
i=1 1(Ai = A)

n∑
i=1

Xi1(Ai = A) = 1
nA

n∑
i=1

Xi1(Ai = A).

where the (random) variable nA denotes how many samples are in aggregation A.
The aggregation index A is used rather than a common counting index i or j to emphasize that

the units of aggregation need not be independent of X and Y , and so X̄A and ȲA are not means of
random samples in general. If aggregation A does constitute a random sample of individuals from
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the entire population, meaning A ⊥ (X,Y ), then ecological inference is not a problem, as explained
in the previous section.

1.3 Extreme Example : Ecological Correlation in a Highly Non-Random
Sample

On the other end of the spectrum when X and Y are binary, consider the case where Ai = Xi,
meaning Ai contains all the information about Xi. That is, a sample (Xi, Yi) is in aggregation 1
(i.e. Ai = 1) if and only if Xi = 1, otherwise it is in aggregation 0 (i.e. Ai = 0). In this case,
(X̄0, Ȳ0) and (X̄1, Ȳ1) are far from means of random samples, and calculating Cor(X̄, Ȳ ) takes more
care, and Cor(X̄, Ȳ ) 6= Cor(X,Y ) (asymptotically or otherwise). Note that X̄0 = 0 and X̄1 = 1
exactly in this case.

Reader note: I initially hoped this made-up example would be short, but it was long and I left it
in anyway. It may not be easy to follow in places.

The ecological correlation is

Cor(X̄, Ȳ ) = E(X̄Ȳ )− E(X̄)E(Ȳ )
σX̄σȲ

.

We can begin to calculate the quantities above using iterated expectation conditioned on aggregation
A; none of the following are different from what they would be in a random sample case:

E(X̄) = E
(
E(X̄A|A)

)
= P (A = 0)E(X̄0) + P (A = 1)E(X̄1)

= (1− pX) · 0 + pX · 1 (because X = 1 whenever A = 1 in this extreme example)

= pX .

E(Ȳ ) = E
(
E(ȲA|A)

)
= P (A = 0)E(Ȳ0) + P (A = 1)E(Ȳ1)

= (1− pX)P (Y = 1|X = 0) + pXP (Y = 1|X = 1)

= (1− pX)P (Y = 1|X = 0) + pXP (Y = 1|X = 1)

= (1− pX)pY − pXY

1− pX
+ pX

pXY

pX

= pY .

E(X̄Ȳ )− E(E(X̄AȲA|A))

= P (A = 0)E( X̄0︸︷︷︸
=0

Ȳ0) + P (A = 1)E(X̄1Ȳ1)

= pXE(Ȳ1)

= pXpY |X

= pXY .
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The variance of X̄ and Ȳ , on the other hand, are quite different from the random sample case:

σ2
X̄

= E(X̄2)− E(X̄)2

= E(E(X̄2
A|A))− p2

X

= P (A = 0)E(X̄2
0 ) + p(A = 1)E(X̄2

1 )− p2
X

= (1− pX) · 0 + pX · 1− p2
X

= pX − p2
X .

σ2
Ȳ

= E(Ȳ 2)− E(Ȳ )2

= E(E(Ȳ 2
A|A))− p2

Y

= P (A = 0)E(Ȳ 2
0 ) + p(A = 1)E(Ȳ 2

1 )− p2
Y

= (1− pX)E(Ȳ 2
0 ) + pXE(Ȳ 2

1 )− p2
Y ,

note that Ȳ0
L−→ pY |¬X = pY −pXY

1−pX
by LLN, and so by the Helly-Bray Theorem E(Ȳ 2

0 )→
(

pY −pXY

1−pX

)2
,

and similarly E(Ȳ 2
1 )→

(
pXY

pX

)2
:

σ2
Ȳ

= (1− pX)
(
pY − pXY

1− pX

)2
+ pX

(
pXY

pX

)2
− p2

Y

= (pY pX − pXY )2

pX(1− pX) .

In this case,

Cor(X̄, Ȳ ) = E(X̄Ȳ )− E(X̄)E(Ȳ )
σX̄σȲ

= pXY − pXpY

pXpY − pXY

= −1,

whereas Cor(X,Y ) = pXY −pX pY√
pX pY (1−pX)(1−pY )

.
Note that in the iterated expectations conditioned on aggregation A, we essentially weight the

within-aggregation expectations by the relative frequency of aggregation membership: E(X1) and
E(Y 1) are weighted by P (A = 1)(= P (X = 1) = pX), which is the probability that an individual
falls into this unit of aggregation. This concept of weighting by membership will be elaborated on
in within-group correlation and ecological correlationin Section 1.4 (the next section), which reveals
the relationship between three very natural sample statistics describing correlation.
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1.4 Relationship Between Sample Correlations at the Individual, Within-
Group, and Ecological Levels

There are in fact several natural ways to conceive of sample correlation when either individual-
or aggregate-level data are available, and three of them satisfy a useful relationship between each
other that conveys the limitations of ecological correlation, first noted in [7]. We use the notation
of Section 1.2 with n total individuals, where the i’th individual has features (Xi, Yi, Ai), with Ai

denoting the unit of aggregation into which this individual falls.
We define the following sample statistics that depend on aggregation of the data:

• Define nA and X̄A as in Section 1.2:

X̄A = 1∑n
i=1 1(Ai = A)

n∑
i=1

Xi1(Ai = A) = 1
nA

n∑
i=1

Xi1(Ai = A).(?)

• Define (biased) sample variance SX and SY in the usual way (over all n individuals), and let
SA

X and XA
Y denote the (biased) sample standard deviations within aggregation A:

SA
X =

√√√√ 1
nA

n∑
i=1

X2
i 1(Ai = A)−X2

A, S
A
Y = analogous.

• Let SA
XY denote the (biased) sample covariance between X and Y within aggregation A:

SA
XY =

1
nA

∑n
i=1XiYi1(Ai = A)−XAY A

SA
XS

A
Y

.

• Let ηXA and ηY A measure the extent to which X and Y vary over aggregations; that is, they
are the sample standard deviations of XA and Y A with respect to A, weighted by nA:

ηXA =

√√√√ m∑
a=1

nA

n
X

2
A −X

2
, ηY A = analogous.(?)

Finally, we define the three forms of correlation that will be related:

• Let r denote the individual sample correlation, i.e. the usual (biased) Pearson’s correlation
coefficient between X and Y

r =
1
n

∑n
i=1XiYi −XY
SXSY

.

• Let rw denote a weighted average of the individual sample correlations within each aggrega-
tion:

rW =
m∑

A=1

nA

n

SA
XY

SA
XS

A
Y

.
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• Define the ecological correlation re as the correlation of the XA and Y A aggregate statistics,
weighted by population:

re =
∑m

A=1
nA

n XAY A −XY
ηXAηY A

.(?)

Note that we use the fact that (XA) = X and (Y A) = Y , which is not hard to show.

The definitions marked with a (?) can be calculated only using the observations {(X̄A, ȲA) :
A = 1, . . . ,m} and can be considered “given” in the typical scenario; quantities defined without this
mark cannot be calculated from aggregate-level observations, and can only be estimated subject to
the limitations described in the following sections.

Theorem 1. The following relationship holds:

re = k1r − k2rw, where k1 = 1
ηXAηY A

and k2 =
√

1− η2
XA

√
1− η2

Y A

ηXAηY A
. (1)

and so re = r if and only if

rw =
(

1− ηXAηY A√
1− η2

XA

√
1− η2

Y A

)
︸ ︷︷ ︸

c

r.

It is easy to show c ≥ 1; furthermore, in practice, rw is smaller than r except in contrived examples.
This means re > r except in contrived examples.

Proof. This fact was first noted in [7] and it is noted in [8] that the proof consists only of algebra,
though as far as I can tell it is not a short explanation and it is not included here. This fact is also
noted (with different notation) in [2].

1.5 Asymptotic Distribution of Individual-Level and Aggregate-Level
(Ecological) Sample Correlations

Here we address the case in which aggregate (population) correlation is equal to individual-level
(population) correlation, namely when aggregations constitute random samples. In this case, it is
possible to estimate the individual population correlation between two features from the sample
correlation of aggregate statistics, but they will have different rates of convergence.

As in lecture notes 12.1 from Statistics 203, letting ρ denote the population correlation between
X and Y and defining the sample correlation as r = SXY

SX SY
, we have

√
n(r − ρ) L−→ N(0, γ2),

where

γ2 = 1
4ρ

2
[
C(XX,XX)

σ4
X

+ 2C(XX,Y Y )
σ2

Xσ
2
Y

+ C(Y Y, Y Y )
σ4

Y

]
−ρ
[
C(XX,XY )

σ3
XσY

+ C(XY, Y Y )
σXσ3

Y

]
+C(XY,XY )

σ2
Xσ

2
Y

,
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where

C(XX,XX) = Cov((X − µX)2, (Y − µY ))

C(XX,XY ) = Cov((X − µX)2, (X − µX)(Y − µY )),

etc. for the other terms.
What about the asymptotic distribution of the ecological correlation re from Section 1.4? We

have two options for attacking this problem:

• Replicate the analysis of the asymptotic distribution of r, using the CLT and the delta method
(Cramér’s Theorem).

• Utilize the relationship between r, rw and re from Equation 1 and apply the Delta Method
to the transformation of r to derive an asymptotic distribution of re.

These are left to a future project! This does not appear in any of the literature I have reviewed.

1.6 Convergence Rate of Ecological Correlation Versus Individual Cor-
relation in Random Samples

This also does not appear in any literature I reviewed. I am interested in studying this topic
further. Surely this has either been addressed, or is easily derivable in a manner similar to analysis
of Pearson’s correlation in any statistics textbook.

2 Examples and Literature Review

2.1 Motivating Examples

The following examples show that the considerations related to ecological inference are applicable
across nearly the entirety of empirical statistical research.

2.1.1 Voting Demographics

Throughout Gary King’s work, the most common running example is that of (unknown) political
preferences among demographic groups.

Throughout US electoral politics, aggregate voting information is typically available at the
national, state, district, and precinct level, but not the individual level. Furthermore, the US
Census measures regional demographic makeup at the individual level but presents its data only
at the “tract”, “block group”, and “block” levels (depending on the nature of the data, it may be
available at the block level or only at the coarser tract level).

King presents almost all ecological inference concepts via the example of inferring “probability
of voting while Black” βB

i from “fraction who voted” and “fraction who are Black” in a given
aggregation. This is a conditional probability (βB

i = P (Voted|Black)); as explained in Section 1, in
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this context (of known marginals) a conditional probability is informationally equivalent to a joint
probability or a correlation between two binary variables. Figure 1 demonstrates this relationship.

Voted
Yes No Tot:

Race Black βB
i 1− βB

i Xi

Non-Black βw
i 1− βw

i 1−Xi

Tot: Ti 1− Ti 1

Figure 1: A two-way (or “four-fold”) table describing the relationship between known aggregate-level statis-
tics and unknown individual-level statistics/parameters. Xi represents the (known) fraction of
voting age people in district i who are Black, Ti represents the (known) fraction of people in
district i who vote, and βB

i and βw
i represent the (unkown) fraction of Black and white people

who vote, respectively.

2.1.2 Gene Co-Expression

The submitted paper [2] questions the assumption that gene or protein co-expression within cells
can be inferred from correlation between genetic material or proteins in tissues. In particular,
this implies that pairs of genes or proteins that are correlated in tissues need not be part of any
molecular cellular mechanism.

2.1.3 College Admissions: Simpson’s Paradox

In the 1970s, The University of California, Berkeley was sued on the grounds of gender bias for
admitting a (statistically significantly) higher fraction of men than women to its graduate school
overall. Each of the departments was instructed to audit its admissions practices, and nearly every
department actually reported admitting a higher fraction of women than men.

The school analyzed the results and discovered that women tended to apply more frequently to
departments with lower overall acceptance rates. For simplicity, suppose there are two departments:
Literature, which receives less funding but has few firm prerequisites, resulting in many applications
with low acceptance rates; Science, which is well-funded and therefore can admit many students,
and furthermore has firm prerequisites, meaning most of those who apply are qualified and are in
fact admitted.

Men (possibly due to discrimination elsewhere within US education) tend to apply in greater
proportion to Science programs, with high admission rates; women tend to apply to Literature
programs with low admission rates. Therefore, even though the Science and Literature departments
may both admit women at as high or higher rates than men, the overall admission rate for women
may be much lower.

This phenomenon is known as Simpson’s Paradox, referring specifically to the case when propor-
tions of a feature within subpopulations are higher for one group but, due to unequal distribution
among the subpopulations, the proportion of a feature among the entire population is lower. A
general problem in ecological inference is that these proportions may not be equal in subpopula-
tions and the general population, but it is only an example of Simpson’s Paradox if the dominant
subpopulation is different in the subpopulation versus the entire population.
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Figure 2 illustrates that when the proportion of women applying to Science is equal to that of
men, the proportion of women who are admitted is greater than that of men; when the rate of
women applying to Science falls sufficiently below that of men, their overall acceptance rate falls
below that of men. Throughout, the acceptance rate of women to both departments is higher than
that of men.
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Figure 2: The overall acceptance rates (and acceptance rates relative to each other) of men and women
depend not only on their acceptance rates within each department, but on their likelihood of
applying to the different departments.

This can be articulated in the language of Section 1.2 using r, rw, and re as follows:
Individual i has three features: (Xi, Yi, Ai), where

Xi =

1 : male

0 : female,

Yi =

1 : admitted

0 : not admitted,

Ai =

1 : applied to Science

0 : applied to Literature.

Then X̄A and ȲA denote the fraction of men who apply to a department, and the fraction admitted
to a department in department A.

• The individual (Pearson) correlation between maleness and admission is positive: r = Cor(X,Y ) >
0, meaning on average, male applicants tend to be admitted at higher rates.

• The ecological correlation re (calculated using iterated expectations conditioned on depart-
ment) is also positive: Cor(X,Y ) > 0, meaning departments with more male applicants tend
to have higher admission rates.

• The individual correlation within department A is negative: Cor|A(X,Y ) < 0 for all A,
leading to a negative rw (the average of these correlations weighted by department size),
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meaning that, on average, within departments, maleness correlates with lower admission.

The relationship between r, re, and rw in Equation 1 clarifies how these three quantities can have
different signs.

2.1.4 Literacy

In the founding paper of the study of ecological inference [7], Robinson notes that aggregate literacy
statistics may lead to wrong conclusions. This paper (with racial insensitivity reflective of 1950s
scholarship) gives two examples using literacy rates in the 1930 Census’s nine “geographic divisions”
of the United States.

First, he compares “percent illiterate” to “percent [Black]”:

The data of this section show that the individual correlation between color and illiteracy is
.203, while the ecological correlation is .946. In this instance, the two correlations a t leasst
have the same sign, and that sign is consistent with our knowledge that educational standards
in the United States are lower for [Black Americans] than for whites.

In another example (with more offensive undertones):

consider another correlation where we also know what the sign ought to be, viz., that between
nativity and illiteracy. We know that educational standards are lower for the foreign born than
for the native born, and therefore that there ought to be a positive correlation between foreign
birth and illiteracy. This surmise is corroborated by the individual correlation between foreign
birth and illiteracy...The individual correlation...is .118. However, the ecological correlation
between foreign birth and illiteracy...is −0.619! When the ecological correlation is computed
on a state rather than a divisional basis, its value is −0.526.

2.1.5 Relationship to Other Problems

Ecological inference shares qualities with other problems involving missing data. The following
problems are distinct from ecological inference, but share similarities worth mentioning. Below is
some brainstorming on this idea.

• The field of differential privacy studies the wide range of data manipulation techniques that
can intentionally obscure information about individual observations in a dataset while pre-
serving all aggregate features of the data to the extent that is possible. This is sometimes
done by systematically adjusting observations with noise or by re-sampling from an emprical
distribution to generate fictional observations. While the resulting (manipulated) data may
be presented on an “individual-level”, what is actually preserved from the original data is
aggregate-level features.

Differentially private data management is becoming a widely-adopted norm in commercial
and government information technology, and there are efforts to legally codify such privacy
guarantees.

Generally, features of the original data that are not explicitly preserved in the mutated dataset
are lost. There may still be opportunities to study how to preserve individual-level correlations
in a differentially private dataset. Interpreting correlations in differentially private data may
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resemble the ecological inference problem. Sensitivity analysis in the field of differential
privacy may yield contributions to our understanding of ecological inference.

• Sensitivity analysis for hypothesis testing when mean imputation is used for missing data also
explores the limitation of using a sample average in place of individual observations. This is
a topic related to clinical trials as in [6].

2.2 Literature Review

The first articulation of the ecological inference problem is by Robinson in 1950 [7]. Apparently
(as mentioned in several other texts), for the following twenty or so years, debate raged within
the field of sociology regarding whether or not ecological inference was being incorrectly applied.
For example, studies on the district-level correlation between a demographic feature and “having
voted” were criticized for equating ecological correlation with individual correlation, but were also
often defended with the explanation that the ecological correlations themselves were of interest, as
the districts constituted a meaningful “unit of analysis” in electoral politics.

Shively [8] from 1969 provides a review of ecological inference. They describe both Goodman’s
regression and the method of bounds, along with the assumptions necessary to apply both. They
give examples where ecological correlation has the opposite sign of individual correlation.

Hannan [3] from 1972 again provides a review of ecological inference. They give a detailed
mathematical framework that describes Goodman’s regression more in the style of a textbook than
a journal article.

Clark and Avery [1] in 1972 provide yet another review of ecological inference and focuses on
the specific nature of bias due to proximity aggregation.

In [2], it is noted that the correlation between molecular markers at the tissue level is not
equivalent to correlation within cells. In particular, this precludes the (tempting) possibility of
inferring gene or protein co-expression within cells (and thereby cellular mechanisms) via their
coexistence within tissues. They articulate the relationship between sample correlations (Pearson’s,
ecological, and within-aggregation correlation) described in Equation 1 slightly differently:

ρuv

ρxy
= 2

√√√√(1 + σ2
ix

σ2
u

)
·

(
1 +

σ2
iy

σ2
v

)
− σix

σu
· σiy

σv
· ρixiy

ρxy
.

In 1997, Gary King made the first lasting contributions on this topic since the 1970s in the
his 1997 book [4], and wrote the most comprehensive reference book on the subject in 2004 in [5].
Throughout Dr. King’s work, the most common running example is that of (unknown) political
preferences among demographic groups.

3 Methods of Ecological Inference

For this section, we exclusively adopt the example and notation of Gary King in [4], which this
section closely follows, as introduced previously in Table 1, which is repeated below. Using the
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notation in Section 1.4, we use the (?) to denote quantities that are observed, namely aggregate
statistics; quantities without this symbol are those that we aim to calculate, estimate, or bound.

Consider the voters in precinct i, of which there are p within a single larger district. Let
superscripts B and w denote Black and white demographics (capitalization of “Black” and non-
capitalization of “white” is intentional per anti-racist best-practices). Let

• Ti = proportion of individuals who vote in district i (the proportion that Turns out to vote)
(?)

• NB
i , N

w
i = number of voting-age Black, white individuals in precinct i. (?)

• NBT
i , NwT

i = number of Black, white individuals who vote in precinct i. Without the sub-
script, these denote the number of those individuals in the entire district.

• Xi = proportion of individuals who are Black (an eXplanatory variable). (?)

• βB
i = NBT

i

NB
i

= proportion of voting-age Black individuals who vote in district i. This is a
realization/estimate of the probability of an individual voting given their demographic and
precinct: βB

i = P (votes|Black,precinct i).

• βw
i = NB

i

NwT
i

= proportion of voting-age white individuals who vote in district i. This is a
realization/estimate of the probability of an individual voting given their demographic and
precinct: βw

i = P (votes|white,precinct i).

• BB =
∑p

i=1
NBT

i

NB the proportion of voting-age Black individuals who vote over the entire
district.

Voted
Yes No Tot:

Race
Black βB

i 1− βB
i Xi

Non-Black βw
i 1− βw

i 1−Xi

Tot: Ti 1− Ti 1

The problem is to estimate the β and B parameters (and the N parameters they comprise) -
every quantity without a (?) - from observations of the X and T variables.

3.1 Goodman’s Regression

Consider the accounting identity:

Ti = βB
i ·Xi + βw

i · (1−Xi), (2)

= (βB
i − βw

i )Xi + βw
i , (3)
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where (2) can be clarified as:

P (vote)︷︸︸︷
Ti =

P (vote∩Black)︷ ︸︸ ︷
βB

i︸︷︷︸
P (vote|Black)

· Xi︸︷︷︸
P (Black)

+
P (vote∩white)︷ ︸︸ ︷
βw

i︸︷︷︸
P (vote|white)

· (1−Xi)︸ ︷︷ ︸
P (white)

in district i.

Note from the form of (3) that if Ti = aXi + b, then b = βw
i and (a + b) = βB

i . Using this
basic idea, we can estimate βB

i and βw
i by assuming they have the same values BB and Bw for all

precincts (all i) in the district and regressing {Ti : i = 1, . . . , p} on {Xi : i = 1, . . . p}.
King notes that this method has been the most common approach to statistical inference since

its study began with [7]. He succinctly describes the central limiting assumption of this method:

...the basic accounting identity in Equation [(3)] has twice as many unkowns (2p) as observations
(p), that is βB

i and βw
i for each of p precincts, computing unrestricted estimates of all unknowns

seems hopeless. The Goodman model resolves the proliferation of parameters by making the
extreme “constancy assumption”: βB

i = BB and βw
i = Bw for all i. if this assumption is

appropriate, then Equation [(2)] becomes manageable, since it has only two parameters:

Ti = BBXi +Bw(1 −Xi).

The problem is that if the assumption is wrong,..., the answers this model produces will often
be wrong.

The issue is that the population parameters governing the samples βB
i and βw

i (which are unob-
served) are not identical in different precincts; in other words, there is a correlation between the
joint individual variables (“voted”, “race”) and the aggregations (denoted A in Section 1.2). Gary
King’s articulation of this concept, illustrated in Figure 3, a touchstone of his work on this topic.
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Figure 3: From [4], “Each graph in this figure has four data points. Each point corresponds to a particular
precinct with actual values Xi and Ti (where Ti = βB

i Xi + βw
i (1 − Xi)). The line through each point

shows the theoretical relationship between Ti and Xi that would arise were the parameters (βB
i , β

w
i ) held

constant but the value of Xi were allowed to vary from zero to one. The lines from which the points
are selected are identical in both graphs. In the left graph, the slope of the lines is uncorrelated with the
value of Xi at each observed point, but in the right graph points with larger values of Xi have lines with
steeper slopes. The goal is to estimate a regression line from the points alone that is the average of the
individual lines (represented as the dark solid line in both graphs). Since the lines for the observations
are the same in the two graphs, the average line we wish to estimate is the same in both. This same
dark line on the left is also exactly the regression line fit to its four points, which is an example of
unbiased regression estimates that result when the slopes and Xi are uncorrelated. On the right graph,
the dashed line is the regression line fit to its points, but because Xi and the slopes are correlation, it
is a biased estimate of the (dark solid) average line.”

3.2 Method of Bounds and Tomography Lines

King notes that the number of black voters in precinct i, NBT
i (which is unknown), cannot exceed

the number of Black individuals in that district NB
i nor the number of voters in that district NT

i

(which are both known), yielding the fact NBT
i ≤ min(NT

i , N
B
i ). Furthermore, βB

i = NBT
i

NB
i

, so we
can also bound βB

i .
This logic yields the following bounds:

max
(

0, Ti−(1−Xi)
Xi

)
≤ βB

i ≤ min
(

Ti

Xi
, 1
)

max
(

0, Ti−Xi

1−Xi

)
≤ βw

i ≤ min
(

Ti

1−Xi
, 1
)
.

Furthermore, [4] notes, we know even more information about these unknown parameters than
these bounds. By re-arranging Equation (3), we see that the two unknowns are related linearly by
known constants:

βw
i =

(
Ti

1−Xi

)
−
(

Xi

1−Xi

)
βB

i .

This, finally, is all the information we know a priori about βB
i and βw

i . Thus, for each precinct i,
our pair of observations (Xi, Ti) yields a line segment on which βB

i and βw
i may lie.
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Figure 4: For each observation of aggregate measurements (Xi, Ti), the maximum deterministic informa-
tion possible regarding the quantities of interest (βB

i , β
w
i ) is that the pair lies on a line segment

termed a tomography line in [4].

Gary King, in both [4] and again in [5] mentions the use of “tomography lines” to represent the
deterministic information contained in ecological correlations. It is an analogy to tomography lines
in radiology, where they represent all the information one has regarding an object’s location given
a scan of the medium in which it is embedded.

3.3 Combination of Goodman’s Regression and Method of Bounds

King’s achievement in [4] (chapter 6) is to combine Goodman’s Regression and the Method of
Bounds via a statistical prior on (βB

i , β
w
i ). Namely, he assumes that they follow a truncated

normal distribution:
(βB

i , β
w
i ) ∼ TN(βB

i , β
w
i |Σ),

where the truncation arises from the bounds in the previous section, and the normality is an
generalization of the (fallacious) assumption of homogeneity between precincts mentioned in Section
3.1 (that βB

i = BB for all i).
Via these mild statistical assumptions regarding (βB

i , β
w
i ), King improved Goodman’s method

for the first time in almost 50 years.

4 Conclusion

To date, the most savvy practitioners of ecological inference have been political campaigns. With
or without strong theoretical frameworks, campaigns have been cross-referencing voter files (lists of
registered voters that include the elections in which they did or did not vote [not, of course, for whom
they voted]), census information, and precinct-level voting data for decades. In particular, voter
files purchased in the dominant political consultancy marketplaces are almost always augmented
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with priors on racial makeup of registered voters based on analysis of their last name, location, and
age. By adding dimensions to aggregate data, the intersection between any two subpopulations
conditioned on other features becomes smaller, and thus less inference is needed. That is, by
adding race beliefs to voter files, we can somewhat confidently answer “what is the percent of Black
Americans who voted?” and then come closer to answering “what percentage of Black Americans
voted for a Democrat?” and other related questions.

Moving forward in an age of big data, tracking, mass surveillance, and the Internet of Things,
it is likely that a proliferation of individual-level data will make previous Census-based aggregate
population studies outdated. On the other hand, as our data collection becomes more sophisticated,
so too does our world become more complex, and it’s likely that the desire for more specific data
will keep pace with its availability. The desire to estimate relationships at levels finer than those
in the data will likely persist. I mentioned a possible relationship between ecological inference and
sensitivity to missing data in general optimization problems, and this type of concern is likely to
become more prominent as data-driven automation becomes more widespread.

On the other hand, the current “wild west” of data from ethically dubious tracking may give
way not to a future of unbridled surveillance but to one of robust data privacy. I have mentioned
the natural relationship that comes to mind between ecological inference and differential privacy.
It is likely that as the data available to population researchers becomes richer, its limitations will
be engineered in intentionally rather than artifacts of its collection mechanism. This may enable
finer-grained data while still preserving individual privacy in census data and voter files. Making
that possible is in some ways an exercise in ecological inference.

Ecological inference has always been presented as a problem that the ignorant would rather
overlook, and still not much useful methodology has been produced to address it. Most of the
literature has been about the limitations of attempting ecological inference in the first place, and
there has been significant criticism of all the methods proposed to address it. In particular, Good-
man’s Regression was never widely adopted outside of a small group of sociological researchers, and
even in that community it received about as much criticism as adoption. Perhaps the topic itself
is too broad to be useful, and each research community will find their own domain-specific ways to
acknowledge and address ecological inference.

Note that I left Sections 1.5 and 1.6 incomplete. This project is a survey, and these analyses of
asymptotic behavior, while exceedingly relevant to this Large Sample Theory course, are not the
focus of any of the resources I relied on.
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