
Anomaly Detection Using Dictionary Learning

Mark Eisen∗, Mengjie Pan†, Zachary Siegel‡and Sara Staszak§

July 22, 2013

MAXIMA REU
Summer 2013

Institute for Mathematics and its Applications
University of Minnesota

Faculty advisor: Alicia Johnson (Macalester College)
Problem poser: Jarvis Haupt (University of Minnesota)

Abstract

This report applies dictionary learning and sparse coding algorithms to data in the interest of de-
veloping a better method of anomaly detection without a priori information about the anomalies them-
selves. These methods aim to find a sparse representation of data Y with respect to a learned basis,
or dictionary D. Specifically, iterative learning algorithms are used to solve the minimization problem
min
X,D
‖Y − DX‖22 + λ‖X‖0, where X is a set of coefficients and λ controls the sparsity of X. Sparsity

helps assign semantic meaning to individual dictionary elements based upon their use in reconstructing
data, which in turn highlights natural groupings and relationships among the data points. Thus, though
traditional applications of dictionary learning include image denoising, novel methods for identification
of anomalous or salient data points can also be derived from such structural features. To this end, we
develop sparsity-informed metrics for defining and identifying anomalies with broad applications. Our
results are promising and competitive with previous methods for flagging anomalous data in both images
and propagating wavefield video.
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1 Introduction

Material diagnostics is, understandably, increasingly focusing on methods of non-destructive testing (NDT),
which allow for a material’s condition to be assessed without causing damage to the material itself. The
Scanning Laser Dropler Vibrometer (SLDV) has proven an effective tool for NDT. The SLDV directs a
laser at each point in the material and uses Doppler shift measurements to determine the amplitude and
velocity of the vibration at each point in time and space [38]. This allows for a complete reconstruction of
the propagating wavefield across the surface of the material. Wavefield videos have in the past been used for
defect localization in materials [25] [33]. Gonella and Haupt [21] look specifically at wavefield data as would
be obtained from a SLDV and use dimensionality reduction techniques to locate the position of defects in the
material. This method is powerful in that it can be performed without any knowledge of material properties.

In this paper, we construct an anomaly detection scheme inspired from work in [21] that utilizes more
recent and generalized dimensionality reduction concepts to localize structural defects in materials from the
SLDV wavefield video. Specifically, we use the techniques of sparse coding and dictionary learning, which
have led to advancements of image denoising and have since been shown to have a wide array of applications.
Although material diagnositcs is our primary motivation, we develop dictionary learning-informed methods
for detecting anomalies in any type of data.

1.1 Anomaly Detection

Anomaly detection is an area of study that has a number of applications beyond structural defect localization,
ranging from finding visual saliency in natural images to flagging intruders in large-scale data networks [22]
[44] [19] [10]. In each application, anomalies may take on one or multiple forms, such as single points,
repeating patterns, or entire spatial or temporal regions. Methods for detecting anomalies are devised in
both supervised [19] [23] and unsupervised form [15] [24], though our interest lies primarily with the latter,
in which little to no a priori information is given about typical and anomalous data. In this case, anomalies
are most often flagged for not following some greater trend the rest of the data follows. We seek a detection
scheme that is robust against various types of both input data and anomalies.

1.2 Existing Methods

Existing approaches to anomaly detection often identify a simple model for the typical system behavior and
identify the points that deviate from this model. Many of these are based on the idea of dimensionality
reduction. For example, Gonella and Haupt [21] perform singular value decomposition to obtain a low rank
model for wavelet data and flag the deviations as structural defects. Similarly Shyu, et al. [37] use robust
principal component classifiers to identify data that does not fit with a learned model. In a slighlty different
approach, Breunig et al. [7] assign to data points a degree of being an outlier, called the local outlier factor
(LOF), through comparison of the local density at a data point and its surroundings.

1.3 Proposed Method

We aim to extend the dimensionality reduction concept of previous anomaly detection methods to include
a recent development in signal processing called dictionary learning [41]. Dictionary learning generalizes
the assumption that “typical” data points inhabit a low-dimensional subspace of the ambient space by
proposing that points may all lie in the union of many very low-dimensional subspaces. Specifically, using
sparse coding techniques, dictionary learning represents each data point as a linear combination of only a
few basis elements, ie. dictionary atoms. Since each data point is closely related to its corresponding atoms,
points using the same atoms are presumably semantically related, naturally grouping the data. This suggests
that anomalous data will exhibit at least one of three properties:

1. Anomalous data will not be well represented by a learned dictionary as long as the dictionary is
constrained to a sufficiently small number of atoms. Therefore, anomalies can be identified as having
large residuals.
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2. The learned dictionary will be more influenced by anomalies than by data points that follow the
greater trend, since anomalies will be much farther from the union of the spans of small subsets of the
dictionary than from the span of the entire dictionary. That is, anomalous data will have high leverage
on the model relative to “typical” data.

3. If the dictionary contains a sufficiently large number of atoms or the anomalies occur frequently, these
data points will fit the model well but will use “rare” basis atoms. These atoms are typically not used by
regular data and are included in the learned model primarily to “accommodate” the anomalous data.
Alternatively, typical basis elements may be used in atypical combinations to represent anomalous
points.

The remanider of this paper is organized as follows. Section 2 discusses sparse coding, dictionary learning
and tuning parameters. Section 3 states our detection methods in detail. Results of our detection methods
on wavefield data and natural images are presented in Section 4 and 5, respectively. Section 6 discusses
extended techniques used to improve detection or aid parameterization of dictionary learning. Section 7
provides a conclusion and brief discussion of future directions for this work.

2 Methodology

Dictionary learning aims to solve the following joint optimization problem:

min
X,D
‖Y −DX‖22 s.t. ‖Xi‖0 ≤ T, ∀i ∈ [1, . . . , n] (1)

where

• Y = (Y1, . . . , Yn) consists of the vector data (length m) to be represented,

• D = (D1, . . . , DK) is an overcomplete basis of “dictionary atoms” (length m) for the column space of
Y ,

• X = (X1, . . . , Xn) is the set of coefficient vectors (length K) that represent each signal with respect
to D,

• ‖ · ‖0 is the l0 pseudonorm, which counts nonzero entries, and

• T is the imposed sparsity.

In other words, a solution is sought in which each vector Yi can be best reconstructed as a linear combination
of at most T columns of D; each reconstruction DXi ≈ Yi is confined to the union of the T -dimensional
subspaces spanned by columns of D. In (1), the joint minimization on X and D is typically solved iteratively,
optimizing for each term seperately while the other is kept fixed. This allows for easier, convex optimization
algorithms to be used in the learning process.

2.1 Sparse Coding

For a fixed D, the process of finding an optimal set of sparse coefficients X is known as sparse coding:

min
X
‖Y −DX‖22 s.t. ‖Xi‖0 ≤ T, ∀i ∈ [1, . . . , n] (2)

Greedy algorithms are often employed to find approximate solutions to an explicitly defined sparsity
contraint, such as the most commonly used Orthogonal Matching Pursuit (OMP) [32]. However, due to
the computational complexity of (2), a number of convex relaxations are often employed. In general, the
minimization of a least-squares objective function with a regularization term of the form:

‖Y −DX‖22 + λΩ(X), (3)

can be substituted, where Ω(X) is a sparsity-inducing operator and λ is a control parameter that tunes the
trade-off between goodness of fit and sparsity of the coefficients. Many different operators have been used
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to produce sparse results, such as l2 and li/lq-norms [16] [46] [3] [2]. The most common of these includes a
relaxation of the l0-norm to the l1-norm in what is referred to as the LASSO problem [40]:

min
X

1

2
‖Y −DX‖22 + λ‖X‖1, (4)

where the l1 norm is defined as the sum of abolsute values of X. By minimizing the l1-norm of X, we
find a solution in which X contains a very small number of values, effectively approximating the l0-norm.
Algorithms used to solve this minimization include Least Angle Regression (LARS) and In-Crowd [13] [20].

Solutions to (4) have proven to be, with the right choice of dictionary, an effective tool in recovering
signals from relatively few or noisy measurements, as is the goal of compressive sensing [9]. Many natural
signals have shown to have sparse representations in well known domains, such as wavelets or Fourier bases
[36] [39]. For this reason, sparse coding has become a popular tool in image processing tasks such as image
recovery (demosaicing) and facial reconstruction [14] [45]. Another strong advantage of sparse representation
relates to the concept of interpretability. By restricting each data point to comprise only a couple of
dictionary elements, greater contextual meaning can be assigned to each atom by noting how it maps to
certain data points. It is this semantic meaning that is believed to be a unique and important benefit of
sparse representations, and the primary motivation behind the third proposed property for anomalous data
introduced in Section 1.3.

2.2 Dictionary Learning

Different dictionaries may permit better or worse sparse fits than others, making the choice of dictionary a
crucial step in the coding process. In the absence of a predefined dictionary that will provide a strong sparse
representation, the best results can be obtained by finding the optimal dictionary specific to the data set.

In the dictionary learning step, we fix the set of coefficients X and solve for the dictionary D that will
provide the best reconstruction of Y . Common dictionary learning methods include probabilistic approaches,
such as maximum likelihood optimization [31], and clustering-based approaches, such as K-SVD [1]. We will
briefly discuss two popular and state-of-the-art algorithms: K-SVD and Online Dictionary Learning.

The K-SVD algorithm is a generalization of k-means clustering, in which data points are clustered
into k groups according to their distance from the group mean. After sparse coding is performed, each
column of D is iteratively updated using singular value decomposition (SVD) to solve for (1). Assuming the
sparse coding stage is performed well, K-SVD is shown to guarantee convergence to a local minimum of the
objective function [1]. Online dictionary learning, on the other hand, is a more recently developed algorithm
that iteratively refines each Yi by, at each step, efficiently minimizing a quadratic surrogate function of (1)
over the set of constraints. Specifically, it looks to solve the LASSO-based problem for D:

min
D

1

n

n∑
i=1

(
1

2
‖Yi −DXi‖22 + λ‖Xi‖1

)
, (5)

where n is the number of columns in Y . Online dictionary learning is also shown to have faster convergence
to a stationary point than previous learning algorithms [29].

Note that a dictionary learned in the interest of sparse coding will be different from one learned otherwise.
For example, SVD matrix factorization also leads to an accurate representation of data by a small number of
bases, in which sparsity can be induced afterwards by truncating small coefficients. However, while this can
confer some benefits of sparse coding, as used in classical methods of data denoising, learning an overcomplete
dictionary will ultimately permit a more accurate representation under such sparsity constraint. While the
coefficients in the SVD can suggest ‘’hidden” variables, they may lack the semantic meaning offered by
sparsity in an overcomplete dictionary. A learned dictionary may point toward more interpretable patterns
by the occasion of atoms’ individual or concurrent use.

2.3 Choosing and Parameterizing a Model

To detect anomalies via dictionary learning, the numerous tuning paramaeters must be understood. As
the desired dictionary model is inherently different from one constructed in the interest of denoising or
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demosaicing, existing heuristics cannot be relied upon. Although nonparametric dictionary learning methods
have been explored using a variety of parameter learning techniques, including beta processes [47] and
minimum description length (MDL) [34], our discussion relies more on an intuitive understanding of the
parameters to be chosen in the context of anomaly detection.

2.3.1 The Equivalent Minimization Problems

Dictionary learning and sparse coding denote general types of strategies, not specific algorithms, and can
take on different forms for their various applications. Each problem calls for the solution of one of several
idealized formulations where each has numerous computable approximations. All such algorithms require
parametric tuning to suit their applications.

In the context of sparse coding, this work primarily deals with the idealized problem (2) in the computable
form of the LASSO problem (4). Both the LASSO and the idealized formulation have three equivalent
formulations:

min
X

1

2
‖Y −DX‖22 + λ‖X‖∗ (4)

min
X
‖Y −DX‖22 s.t. ‖X‖∗ ≤ T (2)

min
X
‖X‖∗ s.t. ‖Y −DX‖22 < ε (6)

where ∗ denotes the sparsity-inducing norm being considered. These problems’ equivalence means that for
any λ, T , or ε, the other two can be chosen so the same X solves all three of (4), (2), and (6) [41].

2.3.2 Sparsity Constraints λ, T , and ε

The accuracy of the dictionary reconstruction of Y is quantified by the residual, ||Y −DX||pp. The sparsity
of a representation is described by the sparsity-inducing l0 pseudonorm, which counts the number of nonzero
coefficients in the representation X. In general, sparsity can be measured by any appropriate regularization
operator, as in (3), as discussed in Section 2.1.

The sparsity constraint λ in (4) controls penalization of non-sparse coefficients in the dictionary repre-
sentation X; λ represents a tradeoff between accuracy and sparsity in the minimization solution. As λ→ 0,
the sparsity-regularization operator has zero weight in the objective function (4), and thus no sparsity is
enforced. In this case, the solution X is any solution to Y = DX, an underdetermined system as D is
overcomplete. On the other hand, as λ→∞, full sparsity is enforced and X → 0, an all-zero matrix.

In the formulation (2), the case T = 1 ensures each Yi is represented entirely by one dictionary atom,
which amounts to a clustering problem solvable by any K-means algorithm, where K would be the size of
the dictionary. For any other integer T , (2) is solved by any algorithm designed for the LASSO problem,
such as K-SVD or online dictionary learning as discussed in Section 2.2. Due to the equivalence of the above
formulations, these demands on the number of nonzero coefficients can be enforced explicitly through T , or
implicitly through ε and λ; e.g., T = 1 would correspond to a very high λ and a high ε.

For anomaly detection, rather than choosing a single value for λ (or any parameter), overall results can
improve when anomalous patches are flagged at various parameter values, and those patches found most
frequently are determined to be true anomalies.

2.3.3 Partitioning and K

The size K of the dictionary should be proportional to the quantity of data. For example, for 64 data points,
a dictionary size of 100 would be, in a sense, “too” overcomplete and would allow each patch to be represented
by one atom that equals itself, i.e. K-means clustering on K data points (over-fitting). Identifying anomalies
based on both residuals and the use of “rare” atoms (as described in Section 1.3) thus only makes sense when
using an appropriately-sized dictionary. Experimental performance at various dictionary sizes is described
in Section 4.

Certain data types come with a natural orientation, such as spatially-oriented pixels in an image,
temporally-oriented audio data, and spatio-temporally-oriented video data. Such data sets are partitioned
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by placing nearby pieces of information and vectorizing them. Images, for example, are broken into m×m
squares or pixels, whose values are then vectorized. These vectors become the columns of the m2×n matrix
Y .

Different partitionings call for differently sized dictionaries. As discussed above, the size of the dictionary
intuitively should scale down with the number of data points n, which increases with a finer partitioning.
However, the ambient dimension of the data will then decrease, presumably reducing the number of atoms
that would define an “overcomplete” dictionary. Thus, it is unclear whether the size of the dictionary should
a priori increase with the number of data points if that increase is the result of subdivision.

In the case of wavefield video data, performance and mathematical justification suggest that K should
increase with finer partitioning. For one, in finer partitionings, although the ambient dimension decreases,
the effective dimension of the data remains fairly consistent through a range of partitionings. Figure 1a
shows that the number of significant singular values, and indeed those singular values themselves, do not
greatly fluctuate at the different subdivisions of video data. To ground this concept, if data were partitioned
into single-pixel patches, each patch would be 1-dimensional and there would be exactly one singular value;
if the entire image were vectorized as one patch, there would only be one data point, and hence also one
singular value. This phenomenon therefore only occurs at some mid-level range of patch size.

The behavior of the dictionary learning and sparse coding is of course affected by dictionary size as a
larger dictionary allows for a sparser and more accurate reconstruction of data. The minimized dictionary-
learning objective function (1) decays with a larger K as presented in Figure 1b. The “knee” in this plot
lies approximately at the knee in the decay of singular values, which is considered the ‘numerical rank’ of
the data, and therefore should scale with the size of the dictionary that can effectively span that data. As is
seen with the numerical rank of differently partitioned data, the knee in this plot remains fairly consistent
at the four presented partitionings, though does increase slightly with finer partitioning, as we’ve seen our
dictionary size should. These knees may not always be an optimal dictionary size, but suggest a reasonable
range for unfamiliar data. Figure 2 shows that images of various types exhibit this phenomenon of constant
dimensionality at different partitions.

Figure 1: Numerical dimensionality of data and dimensionality of a dictionary reconstructing that data

(a) The singular values of wavefield video data parti-
tioned at various resolutions into a matrix

(b) The value of the minimized objective function (1)
at various dictionary sizes, presented at four different
partitioning resolutions.

3 Detection Methods

With the dictionary learning framework in mind, we now detail our proposed anomaly detection methods
from Section 1.3. Specifically, we aim to flag an anomalous data point based on its residual in the model
reconstruction, its influence on the learned dictionary, and its use of rare dictionary atoms.
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Figure 2: Numerical dimensionality of partitioned image data

(a) The singular values of animated image data parti-
tioned at various resolutions

(b) The singular values of geometric test image data
partitioned at various resolutions

3.1 Residual Thresholding

The first and most basic method employed to identify anomalies consists of learning a dictionary to model
all of the data elements and locating features with reconstructions that have large residuals. For data Y ,
learned dictionary D, and sparse coefficient matrix X, the elements Yi that are considered anomalous are
those such that

‖Ri‖pp := ‖Yi − Ŷi‖pp > ε, (7)

where Ŷi = DXi is the reconstruction of Yi and ε is an error threshold. Both p and ε can be tuned for
specific applications. In general, p will reflect the expected size of anomaly relative to patch resolution and
ε will control how conservative the definition of anomaly is. Setting p = 2 is a natural choice in selecting the
norm, as the objective function in the learning step is minimized in this way, and is used most commonly
in implementation. However, it is worth noting that different values of p can highlight different sizes of
anomalies relative to the dimension of the data. Take, for example, the image in Figure 3a, which contains
two salient circles of different sizes and intensities, and otherwise consists entirely of straight lines. By
extracting patches of 25 × 25 pixels from the image and learning a dictionary and sparse coefficients to fit
the data, we can look at the residuals taken with respect to various p-norms.

The images shown in Figures 3b-3d show the magnitude of the residuals at each patch of the image,
taken with respect to different norms. For low p, as shown in Figure 3b, the largest residual appears in the
top right corner, corresponding to the location of the larger, dark circle. With larger norms, the magnitude
of the residual in the top right corner begins to decrease while the magnitude of the rediduals in patches
containing the smaller, clear circle become larger (seen in Figures 3c and 3d). This most likely reflects the
fact that, relative to patch size, smaller anomalies will contain smaller average residuals taken over an entire
patch. However, taken to higher powers, small but intense areas of saliency will create larger residuals.

Determining a proper range of threshold ε can be difficult when little is known about the range of values
the data and its residuals take on. Simple, nonparametric thresholds based on interquartile ranges can be used
as a quick, naive approach, along with more complex nonparametric outlier detection methods [6] [4]. More
statistically meaningful thresholds can be determined when more is known about the underlying probability
distributions of the residuals. Because the residual is minimized as a two-norm in (4) and (5), it can be
reasonably assumed that the residuals in each row of the residual matrix R = Y − Ŷ will have a normal
distribution. It may be tempting to immediately conclude that, from (7), each column of ‖Ri‖22 is the sum
of square normal random variables, and thus

‖Ri‖22 ∼ χ2(m), (8)
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Figure 3: Test image and magnitude of residuals of each image patch with respect to various norms p

(a) Test image (b) Residuals, p = 5 (c) Residuals, p = 20 (d) Residuals,p = 50

where m is the row dimension of Y . However, the rows of R are likely not independent from one another,
especially in the case of images or other types of data with clear spatial relationships between data points.
In any case, if instead each row of ‖Ri‖22 is treated as a seperate chi-squared random variable with degrees
of freedom k = 1, then the summation of sufficiently large number of rows will always converge to a normal
distribution from the Central Limit Theorem (or, in other words, χ2(k) is approximatley normal for large
k).

For correlated chi-squared random variables, this convergence is not reached quickly, so depending on
the size of m, one cannot always assume that simply summing the squared residuals in each column will
have converged to a normal random variable. There are, however, some well-known transformations to
approximate a normal random variable from a chi-squared [18] [42], with varying degrees of accuracy [8]. A
better approach is to implement transforms that do not approximate the normal directly but greatly speed
up the convergence of the sum of many random variables. In [5], the natural logirithm of the chi-squared
ln(χ2) is shown to converge to normality much faster due to the reduction of the skewness of the distribution.

If a sufficient approximation to the normal distribution can be obtained, we can view the total residual
for each reconstructed data vector as an instance of the normal random variable. From there, common
stastical measures of outlier detection can be used, such as flagging all points three standard deviations
from the mean. This approach benefits from setting the threshold based on natural percentiles of a normal
curve, though depending on the dimension of the data in question, may not always be applicable. In our
experimental results discussed in Sections 4.1 and 5, examples of both non-parametric and distribution-based
thresholds are shown.

3.2 Influence and RANSAC

Due to a potentially strong influence in the creation of the model itself, not every anomaly will necessarily
have a poor model fit. Take, for example, the simple case of linear regression shown in Figure 4. In this plot,
the square anomalous point does not have a large residual from the thinner line that was fit to the entire

Figure 4: Effect of influential data point (square) in simple linear regression
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data set. The darker line is fit to the data when the anomaly is ignored and fits the rest of the data more
closely. The difference between these two lines is therefore a more appropriate measure for flagging this type
of outlier. To measure a datapoints’ influence, or leverage, we first look at the classical measure of Cook’s
Distance. Cook’s Distance, δj , for Yj is given by

δj ∝
∑n

i=1 ||Ŷi − Ŷi(j)||22∑n
i=1 ||Ŷi − Yi||

2

2

(9)

where Ŷi is the full model’s reconstruction of data point i and Ŷi(j) is the reconstruction of data point i using
a model learned without access to data point j [11]. The distances are normalized by dividing by the total
square error in the full model reconstruction. It is suggested in [12] that δj > 1 indicates that Yj is highly
influential. This measure can easily be applied to dictionary learning. While the effect of removing a data
point can be analytically described with PCA, a sparsely-coded model might behave differently and confer
more information in such a process. As with traditional Cook’s Distance methods, higher-order information
regarding the concurrent removal of any combination of data points can reveal different patterns, potentially
identifying similar anomalous behavior in one or several data points. The semantic associations gained by
sparse coding may make an influence-based measure particularly fruitful in predicting anomalous behavior.

However, using Cook’s Distance in its complete form can be quite computationally expensive for large
data sets and thus difficult to fine tune the parameters for any particular application due to the time required
to run a single test. While this tool can prove effective when used for second-order detection on a set of
previously flagged data points (see Section 4.4), for a more complete influence-based detection scheme we
look at a more efficient algorithm called Random Sample Consensus.

Random Sample Consensus (RANSAC), detailed in [17], is an iterative algorithm that looks to find the
set of data points whose inclusion in the model fitting creates the best model for fitting those data points.
Intuitively, if there exists a set of “inliers” and “outliers” in the data set, then there is also a model that will
provide a very strong fit of the inliers. Therefore, the model that provides the strongest fit for the inliers will
be the model that is created when all of the influential points, or outliers, are ignored. RANSAC iteratively
takes random partitionings of the data to find this set of inliers in which the error of the inlier reconstruction
is minimized. This method is beneficial in that it is robust against a large ratio of outlier to inlier data
points, as well as being considerably faster than computing Cook’s Distance for each data point seperately.

3.3 Use of Rare Dictionary Atoms

Our final definition of an anomaly is a data point that uses “rare” dictionary atoms. We define and quantify
rarity in the following two perspectives:

1. A rare atom is infrequently used to reconstruct the data. Since each row in X corresponds to a column,
or an atom, in Y , we sum up absolute values of entries in each row in X as a measure of the frequency
of atoms being used. We rank

∑n
i=1 |X

j
i |, where Xj is the jth row of X, for each dictionary atom Dj ,

and we determine that a significantly small sum corresponds to a rare atom.

2. A rare atom is independently used or infrequently used in combination with other atoms to reconstruct
the data. We assess an atom’s correlation with others based on its covariance. We obtain a covariance
matrix C = X · XT , and we rank

∑K
i=1 |C

j
i | for each dictionary atom Dj . A small sum means that

an atom is infrequently grouped with other atoms to reconstruct data, and thus an atom with a
significantly small sum is rare.

After we find the rare dictionary elements, we look for patches that have a significant use of the rare
dictionary atoms. We consider a patch an anomaly if its coefficent corresponding to the rare atom is
considered an outlier based on a common nonparametric flagging method. Quantitatively, given a rare atom
Dj , we examine a set of coefficients Xj

i ∀i. Yi is an anomaly if Xj
i > Q3 + 1.5 × IQR, where Q3 and IQR

denote the third quartile and the interquartile range of the set of coefficients, respectively. We believe that
this detection method is not only the most unique to dictionary learning, but also provides an interesting
and more generalized criteria for anomaly detection. An example of this added layer of robustness is seen
later in Section 5.
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Figure 5: Wave propagation across material with one, three, square and line defects.

(a) Single defect (b) Three defects (c) Square defect (d) Line defect

4 Wavefield Propagation Results

As our primary motivation for this work was to detect structural defects in materials based on the propagating
wavefield video obtained from a SLDV, we ran extensive tests on synthetic data of this type. Similar to the
test data in [21], still images of the waves propagating across a material with a single defect, three defects,
a square, and a line defect are shown in Figures 5a-5d. A diagonal slice of the video data of propagating
wavefield was taken so that, at each point, we looked at the t time steps after the propagation reaches that
point. The wavefield image at each patch at all t time steps was then combined into a mt× n matrix. Here,
m is the number of pixels in a single square patch and n is the number of total patches. In all cases we used
t = 11 time steps in order to avoid boundary reflections from the edge of the material.

As previously discussed, the resolution of a given data set has an impact on the ability of these techniques
to detect any anomalies. Therefore, we also tested our methods on different partitionings of the video data.
For our tests we used three different resolutions: m = 1089 and n = 37, m = 289 and n = 152, and m = 81
and n = 587. Note that these correspond to patch sizes of 32x32, 17x17, and 9x9 pixels, respectively.

We used the open-source Sparse Modeling Software (SPAMS) package to implement the algorithms used
for sparse coding and dictionary learning. In particular, the LARS algorithm was used in the sparse coding
step and the optimized Online dictionary learning was used to learn the dictionaries [29] [28]. In addition,
all dictionaries were learned from (4) with λ = 1.5σY , where σY is the standard deviation of the wavefield
data.

4.1 Identifying patches with large residuals

From (7), we used the common p = 2-norm when defining the residuals for all resolutions, and used both
nonparametric and normal percentile based error thresholds ε.

Our nonparametric threshold εn was based on a simple interquartile-range based measure:

εn = Q3(‖Ri‖22) +BIQR(‖Ri‖22), (10)

where Q3(‖Ri‖22) and IQR(‖Ri‖22) is the third quartile and interquartile range of residuals ‖Ri‖22, re-
spectively, and B is a constant to control sensitivity. With this nonparametric threshold, it is difficult to get
sense for B without first inspecting the residual data. Shown in Figure 8 is an example of potential εn for
different values of B in the case of three defects at the resolution of m = 289 and dictionary size K = 24. It
is clear that a smaller B will flag more anomalies giving a conservative count of defects. A visual inspection
of this plot shows that, for this data, B = 4 captures all of the substantial anomalies. A similar visual
inspection was done for the resolution m = 1089 and m = 81, yielding roughly “optimal” B = 2 and B = 8,
respectively. Shown in Figure 6 are the results for all sets of defects for each resolution using nonparametric
thresholding. Note than for the 33x33 pixel case in Figures 6a-6c, the defects were too small relative to
patch size to be detected by the l2-norm of the residuals, so in (7) the larger p = 5 was used, though it still
performed quite poorly relative to other patch sizes. As discussed in Section 2.3.3, the “optimal” dictionary
size K varied between resolutions. For example, the 1089 pixel patches required a dictionary of size K = 16,
while the 289 and 81 pixel patches performed best with sizes K = 24 and K = 32, respectively. A more
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Figure 6: Non-parametric residual threshold results, “optimal” K

(a) Three defects, 33x33 pixel
patches, K = 16, B = 2

(b) Crack defect, 33x33 pixel
patches, K = 16, B = 2

(c) Square defect, 33x33 pixel
patches, K = 16, B = 2

(d) Three defects, 17x17 pixel
patches, K = 24, B = 4

(e) Crack defect, 17x17 pixel
patches, K = 24, B = 4

(f) Square defect, 17x17 pixel
patches, K = 24, B = 4

(g) Three defects, 9x9 pixel
patches, K = 36, B = 8

(h) Crack defect, 9x9 pixel patches,
K = 36, B = 8

(i) Square defect, 9x9 pixel patches,
K = 36, B = 8
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Figure 7: Non-parametric residual threshold results, 15 ≤ K ≤ 45

(a) Three defects, 33x33 pixel
patches, B = 2

(b) Crack defect, 33x33 pixel
patches, B = 2

(c) Square defect, 33x33 pixel
patches, B = 2

(d) Three defects, 17x17 pixel
patches, B = 4

(e) Crack defect, 17x17 pixel
patches, B = 4

(f) Square defect, 17x17 pixel
patches, B = 4

(g) Three defects, 9x9 pixel
patches, B = 8

(h) Crack defect, 9x9 pixel patches,
B = 8

(i) Square defect, 9x9 pixel patches,
B = 8
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Figure 8: Nonparametric thresholds for various B

robust approach we used was to simply perform the test for a range of values of K and add together the
norm of the residual for all cases. Results for this approach (15 ≤ K ≤ 45) are shown in Figure 7.

In addition to the nonparametric threshold, we also ran tests that flagged anomalies based on a standard
normal distribution. Recall from Section 3.1 that χ2(m) will approximate the sum of square residuals and,
for large m, this will closely resemble a normal distribution. To ensure convergence to normal, we took the
natural logarithm of ‖Ri‖22, as discussed earlier, and then simply flagged points that were above 3 standard
deviations from the mean as anomalous. The results for this approach over the range of K are shown in
Figure 9. In the 33x33 pixel patch case (Figures 9a-9c), the ratio of non-anomalous to anomalous patches is
too small due to small n. For this reason, the outlier data contribute highly to the properties of the normal
curve and instead are less than 2 standard deviations from the mean. Again, the large patches perform
the worst, while the other two resolutions find most anomalies with false positives around the region of
excitation.

4.2 Identifying patches using RANSAC

We employed RANSAC to find the inliers of wavefield data highlighted patches not included in the consensus
set as anomalies. Shown in Figure 10 is our results of detecting three point anomalies, crack anomalies and
rectangular anomalies at the resolution of m = 289 and m = 81. While the optimal dictionary sizes for both
resolutions were generally between 20-25, the specific value of K used to generate each figure is noted. Our
tests showed that RANSAC detected regions of three point anomalies at both resolutions with occasional
false positives around the excitation point, though it missed the exact locations a few times (shown in Figure
10a and 10d). RANSAC also detected crack and rectangular anomalies correctly, with some false positives
close to the anomalies(shown in Figure 10b, 10c, 10e and 10f). False positives commonly occured around
the excitation point (shown in Figure 10c), since the excitation point does not fit in the dictionary model.
Note that RANSAC was not able to perform at the resolution of m = 1089 because the corresponding n is
very small and thus the sample size is too small to get a model for other data to fit in. We also want to
point out that, since RANSAC takes random samples on every try, it is possible that results for detecting
anomalies change every time, even with the same parameters. However, the regions detected are usually the
same, which shows that RANSAC is stable though the samples are randomly chosen.

4.3 Identifying rare dictionary atoms

We next applied usage of the rare dictionary atoms method to anomaly detection on wavefield data. At the
resolution m = 81 and with K = 20, this method detected some of the point anomalies and parts of the
crack and square anomalies (Figure 11a-11c). However, several false positives were found and there were
sometimes more false positives than true anomalies detected. For example, in Figure 11b, the method only
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Figure 9: Normal quantile-based residual threshold results, 15 ≤ K ≤ 45

(a) Three defects, 33x33 pixel
patches ( 1 std)

(b) Crack defect, 33x33 pixel
patches ( 1 std)

(c) Square defect, 33x33 pixel
patches ( 1 std)

(d) Three defects, 17x17 pixel
patches

(e) Crack defect, 17x17 pixel
patches

(f) Square defect, 17x17 pixel
patches

(g) Three defects, 9x9 pixel patches (h) Crack defect, 9x9 pixel patches (i) Square defect, 9x9 pixel patches
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Figure 10: Detecting anomalies using RANSAC

(a) Three defects, 17x17 pixel
patches, K = 24

(b) Crack defect, 17x17 pixel
patches, K = 24

(c) Square defect, 17x17 pixel
patches, K = 20

(d) Three defects, 9x9 pixel
patches, K = 24

(e) Crack defect, 9x9 pixel patches,
K = 24

(f) Square defect, 9x9 pixel
patches, K = 24

detected the anomaly in the middle of the crack but missed the rest and had two false positives. The method
detected anomalies correctly at the resolution m = 289 at 35 ≤ K ≤ 40 (Figure 11d-11f). It detected the
region of anomalies at the resolution m = 1089 at 30 ≤ K ≤ 35, but missed a few patches (Figure 11g-11i).
Few false positives were found at the later two resolutions. Using rare dictionary atoms for detection is
sensitive to K at resolution m = 81 and m = 289, but it is stable at resolution m = 1089. We also tested
this method on wavefield data with no anomalies. At small dictionary size (K < 20), it did not detect any
anomalies; while at large dictionary size (K > 30), it flagged the excitation point as anomalies.

4.4 Use of influence as a second-order detection

The methods we presented above often detect false positives around the excitation point and near anomalies.
In order to decrease false positives, we apply the influence method to patches considered as potential anoma-
lies as a second-order detection. This second-order detection eliminates false positives around anomalies,
but it does not always eliminate false positives around the excitation point since the excitation point some-
times has greater influence than the anomalies, especially for large patches. Figure 12 shows performance
of detecting three anomalies before and after applying influence method. The influence method eliminates
three false positives and keeps all three anomalies.

4.5 Comparing method performance on wavefield data

While each of our anomaly detection methods can pick out the correct patches for several types of anomalies
in the wavefield data, the methods do interact differently with the parameters. Given the same set of data,
the residual method will perform better with smaller values of K while the rare atom method will have
more success with larger values. This makes sense intuitively because with a larger dictionary size it is
more likely that the anomalous regions will get one or more atoms that are then not used by the rest of the
reconstruction. Similarly, with fewer dictionary atoms, since it is less likely that anomalies will have their
own atoms to use, they will be poorly reconstructed and thus have larger residuals by which they can be
detected.
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Figure 11: Detecting anomalies using rare dictionary method

(a) Three defects, 33x33 pixel
patches, K = 20

(b) Crack defect, 33x33 pixel
patches, K = 20

(c) Square defect, 33x33 pixel
patches, K = 21

(d) Three defects, 17x17 pixel
patches, K = 39

(e) Crack defect, 17x17 pixel
patches, K = 34

(f) Square defect, 17x17 pixel
patches, K = 37

(g) Three defects, 9x9 pixel
patches, K = 30

(h) Crack defect, 9x9 pixel patches,
K = 30

(i) Square defect, 9x9 pixel patches,
K = 35

Figure 12: Comparing methods for detecting saliency based on orientation

(a) Detecting three anomalies only using
RANSAC, K = 24

(b) Detecting three anomalies using influence
as a second-order detection, K = 24
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Figure 13: Patches identified by each method for different values of K

(a) Residual method (b) Rare atom method

Figure 14: Method performance for detecting saliency in “bee” image

(a) Original image (b) Residual normal
quantile-thresholding,
15 ≤ K ≤ 45

(c) RANSAC, K = 12 (d) Anomaly detection
using rare atom method

The charts in Figure 13 show the relationship between both true and false positives for different dictionary
sizes using the wavefield data with three anomalies. At some of the higher values of K shown in 13a, the
residual method does not identify any anomalies, which supports our intuition that the residual method
would perform better with smaller dictionaries. For the lowest values of K shown in figure 13b, the rare
atom method only identifies false positives. While there is generally a trade off between more true positives
and fewer false positives, this method is less successful with smaller dictionaries.

5 Natural Image Results

We tested each of our three detection methods on detecting salient features in a small set of natural images
taken from the MSRA Salient Object Database [26]. Note that each of these images are entirely in grayscale,
meaning saliency is determined only through an object’s shape or texture, and not color. The detection
results for images using residusal thresholding, RANSAC, and use of rare dictionary elements are shown in
Figures 14-16.

In all cases, image patches correspdonding to the salient object were detected, though with varying
degrees of completeness. For example, in Figure 14, the RANSAC method in 14c captured almost the entire
bee while residual thresholding in 14b only flagged the edges. All methods had trouble capturing the entire
region of the image containing the bottle in Figure 15. To capture larger anomalous structures, however, we
develop a spatially-adjusted scoring framework in 6.2.

Natural image data is also informative in how it highlights the various benefits and applications of each
particular method. If the feature of interest is relativley large in comparison to other image features, it
may use dictionary atoms that are unique to that feature, thus making it easy for the rare atom method to
identify but difficult for the residual thresholding method. As with the general case, the choice of parameters
can have an impact as well when determining the efficacy of each method with different data.
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Figure 15: Method performance for detecting saliency in “beer” image

(a) Original image (b) Residual normal
quantile-thresholding,
15 ≤ K ≤ 45

(c) RANSAC, K = 13 (d) Anomaly detection
using rare atom method

Figure 16: Method performance for detecting saliency in “balloon” image a

(a) Original image (b) Residual normal quantile-thresholding, 15 ≤
K ≤ 45

(c) RANSAC, K = 25 (d) Anomaly detection using rare atom method

aImage taken from http://nice-cool-pics.com
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Figure 17: Comparing methods for detecting saliency based on orientation

(a) Image with salient re-
gion based on orientation

(b) Anomaly detection
using rare atom method

(c) Anomaly detection us-
ing residual method

(d) Graph of the residuals
for figure 17a with line at
the mean

To illustrate this, we peformed the residual and rare atom method on the test image shown in Figure
17a. In this image there is one clear saliency in the single bar that is oriented vertically. Using the rare
atom method, three patches were flagged and the first patch identified contained the true “anomaly”, shown
in Figure 17b, whereas the residual method failed to identify the correct patch and in some cases did not
identify any patches at all (shown in Figure 17c). An examination of the plot of residuals in Figure 17d
shows that there isn’t patch in which the residual is signifigantly larger than the others. The residuals are
primarily close to the mean (the straight line) and patch 151, corresponding to the salient bar in fact has the
smallest residual. It is likely that, for this image, dictionary learning is able to well represent the anomaly
but only by learning a dictionary atom specific to that patch. As a result, this type of anomaly is impossible
to detect with residual thresholding but quite simple to detect with the rare atom detection.

6 Extended Techniques

In this section we present a few additional, extended techniques that in certain contexts can improve detection
or aid in the parameterization of the dictionary learning process.

6.1 Optimal dictionary size

As seen in Figure 13, finding the optimal dictionary size K is an important step in the paramaterization of
the dictionary model. We’ve seen that, in general, the optimal size will scale more with the number of data
points n than the dimension of the data m (see Section 2.3.3 for discussion). However, for an unsupervised
approach such as ours, it is impractical to heuristically search for this optimal size by hand. Using a range
of values for K is a potential solution to this problem; some results using a range are shown in Section
4.1, although finding a proper range will again require some trial-and-error. We instead wish to look into
techniques that can automatically find an appropriate K or range of K through the clustering of nearby
dictionary atoms.

Take, for example, the dictionary learned for a simple image shown in Figure 18. The dictionary is
learned with K = 100, which, due to the number of redundant atoms, is clearly more than is necessary to
represent the image. We can therefore cluster atoms that are close by a measure such as Euclidean distance
or vector inner product, and the number of resulting clusters would represent a reasonable K. Figure 19a
shows a portion of a dendrogram that indicates the hierarchical clusters of dictionary atoms that form at
different resolutions based on the Euclidean distance between them. At a resolution of 0.22, the atoms
underlined with red and blue will group into separate clusters. As seen in the dictionary in Figure 19b, these
do in fact correspond to atoms that are almost visually indistinguishable. A conceptually related approach
of clustering similar dictionary atoms is used in object categorization in images in [43]. Rao and Porikli
in [35] also propose a method called clustering online dictionary learning (COLD) in which the “optimal”
dictionary size is found by clustering nearby dictionary atoms using mean shift clustering at each step of the
learning process.

20



Figure 18: Example dictionary learning for simple image, K = 100

However, for the purposes of anomaly detection, we must be careful about clustering atoms together
because there are some atoms that may be geometrically close to other atoms but carry important semantic
signifigance in our detection schemes (e.g. rare or influential atom). Rather than performing clustering ex-
plicitly, we instead wish to use hierarchical clustering merely as a means to identify the “optimal” dictionary,
after which we perform dictionary learning for that value of K rather than using the clustered dictionary.
That is, we identify a resolution r and initially large dictionary size K0 and learn a dictionary and perform
hierarchical clustering. The number of clusters formed at resolution r becomes the new dictionary size K1

and this process continues until Ki−1 = Ki. Effectively, we look for a dictionary in which no atom is less than
r from another atom but never manipulate the atoms themselves either during learning or in post-processing.
Using this step will increase the running time, although in practice, finding the “optimal” size is faster than
performing the tests over a range of K. It is also important to note that although this makes for an easier
initial selection of K0, the final size Kf is not completely independent of the intial value. This phenomenon,
along with some initial results on propagating wavefield video, is presented below.

We performed preliminary tests of this approach on the wavefield video across materials with three
structural defects (Figure 5b). These tests are in no way comprehensive and are provided only to demonstrate
potential in this technique and some insight into selection of r and K0. The tests were performed on the
residual thresholding method and the rare dictionry atom usage method at two partitionings (17x17 pixel
patches and 9x9 pixel patches). In the case of residual thresholding, we found that with r = 6 ∗ σ(Y ) we
were able to almost always find an “optimal size” within 8 iterations (in most cases only 3 or 4). The results
for different initial dictionary sizes are shown in Figures 20 and 21. In almost every case K converges to
the same value except in 20d and 21d when a larger K0 actually causes it to converge to smaller final size.
Interestingly, this convergence is not affected even when the dimensionality of the data changes for the two
different partionings, which may be an effect similar to what was discussed in Section 2.3.3 regarding effective
dimensionality of the data.

We also attempted to find optimal sizes for the use of the rare atoms method. This of course requires a
different clustering threshold than a residual-based method, as we will need a larger Kf so that the anomalies
will be well represented in the learned model. We experimentally found the strongest results at r = 5∗σ(Y ).
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Figure 19: Clusters formed at resolution 0.22

(a) Strictly limiting false positives
(b) Allowing approximately one false positive per de-
fect

Figure 20: Finding “optimal” size for residual thresholding, 17x17 pixel patches

(a) K0 = 40, Kf = 27 (b) K0 = 60, Kf = 27 (c) K0 = 80, Kf = 27 (d) K0 = 100, Kf = 20

The results are shown in Figures 22 and 23. For both partitions, the same “optimal” size is found for all
initial sizes, including the additional K0 = 150. The value of Kf is not exactly the “optimal” size found
experimentally in Section 4.3 and therefore performs slightly worse due to increased false positives. In
general, this relatively simple procedure for determining “optimal” size shows promising results that with
further study could prove a very effective tool in parameterization.

6.2 Spatial Scoring

In datasets in which each data point’s location relative to other data points carries important meaning, such
as pixels in natural images, it may prove beneficial to include some of this spatial information when “scoring”
each data point. For instance, in the case of an image, if all of image patches surrounding a small region are
flagged as anomalous, then there is good chance that the inside of the region is anomalous as well. We let Si

Figure 21: Finding “optimal” size for residual thresholding, 9x9 pixel patches

(a) K0 = 40, Kf = 27 (b) K0 = 60, Kf = 27 (c) K0 = 80, Kf = 27 (d) K0 = 100, Kf = 22
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Figure 22: Finding “optimal” size for rare atom usage, 17x17 pixel patches

(a) K0 = 60, Kf = 42 (b) K0 = 80, Kf = 42 (c) K0 = 100, Kf = 42 (d) K0 = 150, Kf = 42

Figure 23: Finding “optimal” size for rare atom usage, 9x9 pixel patches

(a) K0 = 60, Kf = 53 (b) K0 = 80, Kf = 52 (c) K0 = 100, Kf = 52 (d) K0 = 150, Kf = 53

denote the “score” of Yi and dij the distance between Yi and Yj . By “score” we mean to generalize any of
the previously discussed anomaly indicators; e.g. sum of square residual. We then define a spatially-adjusted
score, Ŝi, as:

Ŝi =

n∑
j=1

αdijSj1(dij < W ), (11)

where α < 1 is a decay parameter, W is the window in which we consider spatial proximity relevant, and
1(·) is the Boolean indicator function. By considering the scores of neighboring patches, we aim to improve
the ability of our methods to detect larger anomalous structures relative to the size of the data partitioning.
In images, for example, spatial scoring may help to detect the entirety of a salient object rather than just its
outline. This is a partcularly important feature for saliency detection schemes, as otherwise the size of the
patch partition can have a strong effect on detection. Larger patches may capture a wider physical range
of saliency but, as briefly discussed in Section 3.1, may fail to detect comparitivley small anomalous points.
Therefore, a method that uses small partitionings can still detect larger saliencies.

Another natural benefit of a spatially-adjusted scoring scheme is its ability to act as a filter of isolated
and extraneous false positives. While legitimate anomalies can certainly be isolated from others, as patches
get smaller it becomes less likely that a single anomalous point will not be in the neighborhood of another
anomaly and is therefore a potential false positive. In this way, (11) can also be viewed as an averaging or
low-pass filter, as seen in the residual plot in Figure 24. Examples of both of these applications of spatial
scoring are shown in the following section.

To demonstrate the use of our spatial scoring system, we also compared a normal residual thresholding
(nonparametric, B = 1, K = 18) result on the image in Figure 15a to a result that employed a spatial
scoring. From (11), we set the window W = 3 and decay parameter α = 0.8. These results are shown in
Figure 25. Here we can see that more of the bottles’ bases are detected as part of the salient object, though
the necks are still being missed.

Another interesting thing to note is that the spatial scoring also helped to remove some false positives
at the bottom of the image in Fig. 25a. This supports the proposed benefit of spatial scoring in removing
isolated false positives. Another good example of this feature is shown in Figure 26, in which spatial scoring
is used on non-parametric residual thresholding (B = 4, K = 25).

23



Figure 24: Example of residual, before and after spatial scoring

(a) Original residual scores (b) Spatially-adjusted (averaged) residual scores

Figure 25: Spatial scoring on non-parametric residual thresholding (B = 1, K = 18) to detect larger
anomalous structure

(a) Normal scoring (b) Spatial scoring W = 3, α = 0.8

Figure 26: Spatial scoring on non-parametric residual thresholding (B = 4, K = 25) to remove false positives

(a) Normal scoring (b) Spatial scoring W = 2, α = 0.5
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6.3 Supervised Dictionary Learning

Dictionary learning, sparse coding, and all related anomaly-detection methods have clear extensions to
supervised formulations. A dictionary can be learned on “clean” data with no anomalies, and then used to
identify data patches that don’t have an accurate sparsely-coded representation. Presumably, other “typical”
data could be represented accurately and sparsely with such a dictionary, while anomalous data could not.

The advantages of unsupervised dictionary learning techniques should be clear from their descriptions,
but certain, highly regular types of data lend themselves to the use of supervision. For example wavefield
data follows a highly regular pattern in the absence of defects, and an off-the-shelf or tailor-made “wavefield
dictionary” could be employed.

An overcomplete dictionary learned on defect-free data can represent anomalies less accurately (under
a sparsity constraint) than a dictionary learned in the presence of those anomalies, because they might
influence the dictionary to better represent them. While it has been shown above that an ad-hoc dictionary
can successfully help identify anomalies on a clean background, a specialized dictionary learned on clean
data might perform better for this reason.

Obtaining a useful premade dictionary might not be difficult. For image denoising and missing-data
recovery, sparse coding performs well even on premade dictionaries consisting of generic “natural image
patches” or simply wavelets [30]. A premade dictionary often comes along automatically with the data
collection apparatus, such as in the case of security cameras, which accumulate more than enough training
data to pick up on salient activity within a frame. This background detection has been performed in
conjunction with dictionary learning for video data in [27].

Training data is particularly useful when the experimental data collection is undersampled. Intuitively,
understanding the behavior of “typical” data is the only way to reconstruct missing points without making
assumptions about those points; such assumptions, such as a minimal numerical rank, can lead to meaningful
reconstructions and that body of research is termed “matrix completion problems.” However, prior knowl-
edge about typical data, such as an overcomplete dictionary learned from such data, allows very accurate
reconstructions thereof and thus straightforward anomaly detection via large residuals.

Wavefield data in particular benefits from undersampled usability. Wavefield data is gathered through
laser doppler vibrometers that scan over a mechanically excited solid and thus, to capture any phenomenon
not observable in standing waves (such as interaction with a wavefront), excitation must be achieved and
allowed to die down each time the scanning proceeds. This process takes time, and so the level of undersam-
pling to which anomaly detection remains viable could be an important consideration in data collection.

The ability to reconstruct undersampled wavefield data is explored in depth in [21], which notes that
data spatiotemporally sampled at twice its highest frequency (with respect to the Fourier transform) can
be reconstructed exactly, as can data sampled at the laxer Landau rate. In theory, intelligent directional
spectral decomposition could reconstruct a wavefield whose propagation’s frequency is known from this
minimal sampling, and thus only sampling rates below this threshold pose a theoretical challenge to any
anomaly detection technique.

In [21], a sampling rate of 2.5% was found to correspond to this theoretical limit for a particular wavefield
data set, and their anomaly-detection (based on singular value decomposition and sparse coding) worked
well to around 6-7% sampling.

This report uses similar, if not identical data, and Figure 27 expresses the performance of anomaly
detection using dictionary learning on training data, while Figure 28 shows the undersampled data being used,
for which numerical techniques are clearly necessary, as the heavily undersampled anomalies are invisible to
the naked eye. As can be seen, reasonable performance holds up until approximately 10% sampling and then
drops off sharply. If false positives are not heavily penalized (allowing around one per detected anomaly),
performance persists until 5% sampling. With ideal tuning these methods would perform better, but using
flexible methods, such as averaging results over multiple parameter values, is more general and realistic.

7 Conclusion

Using dictionary learning to detect structual anomalies in propagating wavefield data and saliency in natural
images has been shown to be successful. Our three main approaches of finding patches with large residuals,
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Figure 27: Performance of anomaly detection in undersampled data using supervised dictionary learning

(a) Strictly limiting false positives (b) Allowing approximately one false positive per defect

Figure 28: Undersampled wavefield data

(a) 100% sampling (b) 50% sampling (c) 20% sampling (d) 10% sampling

with large influence or with a significant use of a rarely used dictionary atom are able to detect anomalies cor-
rectly with tolerable false positives. While the three methods work best at specific dictionary sizes, we looked
into clustering-based techniques to choose an optimal dictionary size. Additionally, we use spatial scoring
to help detect the entirety of a salient object and we demonstrate supervised dictionary learning’s ability
to detect anomalies in undersampled data. Future work can begin to explore more advanced spare coding
schemes, such as tree-sparse or nonlinear manifold representations, as well as perform more comprehensive
testing on larger and more diverse datasets.
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