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Abstract. A zero-sum flow of a graph G is an element of the nullspace of the

incidence matrix of G whose coefficients are nonzero real numbers. A zero-sum

flow is called a k-flow if all the coefficients of the nullspace vector are integers
less than k in absolute value. It is conjectured that any graph with a zero-sum

flow must admit a 6-flow. In this note, we consider the lattice of subspaces

of an n-dimensional vector space over a finite field. We prove the existence
of zero-sum flows for the incidence matrix between two levels of the linear

lattice with different rank numbers. Using field-theoretic considerations, we

also show that there exists an ([m]q + 1)-flow or ([n − m]q + 1)-flow between
levels 1 and m for 2 ≤ m ≤ n − 2 whenever m or n − m, respectively, divide

n. Additionally, if neither m nor n−m divide n, we show there exists a 2- or
3-flow between levels 1 and m.

1. Introduction

1.1. Motivation and Literature. For a matrix M with real entries, a zero-sum
flow is an element of the nullspace of M with no zero entries. A k-flow for the
matrix M is a zero-sum flow with integer entries where the absolute value of each

entry is less than k. In other words, ~v =
(
a1 a2 . . . am

)T
is a k-flow for

an n × m matrix M if M~v = 0 and, for 1 ≤ i ≤ m, ai is an integer satisfying
0 < |ai| < k. The existence (or non-existence) of zero-sum k-flows for incidence
matrices of combinatorial objects has been the object of much study.

Let M be the {±1, 0}-incidence matrix of vertices versus arcs of a directed graph
G. In other words, the rows and columns of M are indexed by the vertices and arcs
of G, respectively, and the (i, j) entry of M is 1 if the ith vertex is the head of the
jth directed edge, −1 if the ith vertex is the tail of the jth directed edge, and zero
otherwise. The celebrated Four Color Theorem (Appel and Haken [5, 6] and Appel,
Haken, and Koch [7]) is equivalent to the statement that if G is a bridge-less planar
directed graph (a bridge a.k.a. a cut-edge is an edge whose removal increases the
number of connected components of the graph) then M has a 4-flow (see Tutte [15]
as well as Seymour [14]). Further, a famous conjecture of Tutte [15] asserts that
every {±1, 0}-incidence matrix of vertices versus arcs of a bridge-less directed graph
has a 5-flow. The best result toward this conjecture is that of Seymour [13, 14] who
proved that such matrices must have a 6-flow. Because of the connection to these

Date: April 25, 2013.
2000 Mathematics Subject Classification. Primary 06A07; Secondary 05D05, 05D15.
Key words and phrases. nowhere-zero flows, zero-sum flows, Linear Lattices, Subspace Lat-

tices, nowhere-zero trades, nullspace of incidence matrices.
PCURC stands for the Pomona College Undergraduate Research Circle whose members for

this project were David Breese, Benjamin Fish, Isabel Juarez, Utsav Kothari, Stephen Ragain,

Claire Ruberman, Aparna Sarkar, and Zachary Siegel.

1



2 SARKIS, SHAHRIARI, AND PCURC

major results, the literature on zero-sum flows on directed graphs is extensive. (For
directed graphs, what we have called a k-flow is called a nowhere-zero k-flow.)

Now, let M be the {0, 1}-incidence matrix of vertices versus edges of a (simple
undirected) graph G. The rows and columns of M are indexed by the vertices
and edges of G, respectively, and the (i, j) entry is 1 if the ith vertex is on the
jth edge and 0 otherwise. A conjecture of Akbari, Ghareghani, Khosrovshahi, and
Mahmoody [2] states that if M has a zero-sum flow, then M must have a 6-flow.
The same authors also characterized the graphs whose incidence matrix does have
a zero-sum flow. This conjecture turns out to be equivalent to an older conjecture
of Bouchet [10] for bidirected graphs—for the equivalence of the two conjectures
see Akbari et al [1]—and has been proved for bipartite graphs (Akbari et al [2]),
and for r-regular graphs with r ≥ 3 (Akbari et al [1, 2, 3] and Zare [18]).

Let [v] = {1, . . . , v}, and define a k-subset of [v] as a subset of [v] of size k.
If B is a family of k-subsets of [v], then B is called a t-(v, k, λ) design if every
t-subset of [v] is contained in exactly λ elements of B. The elements of [v] and B
are called the points and the blocks of the design, respectively. The design is called
symmetric if v = |B|. Let M be the {0, 1}-incidence matrix of points versus blocks
of a t-(v, k, λ) design. Then Akbari, Khosrovshahi, and Mofidi [4] prove that M
has a zero-sum flow if t = 2 and the design is non-symmetric. They also conjecture
that for any non-symmetric t-(v, k, λ) design, M has a 5-flow, and, for v > 7, and
every 2 − (v, 3, 1) design (a.k.a. Steiner triple systems), M has a 3-flow. In the
design-theory literature, a zero-sum flow is called a nowhere-zero trade.

For our final example of k-flows for incidence matrices of combinatorial objects,
let Wtk(v) be the incidence matrix of t-subsets versus k-subsets of [v], with 1 ≤ t ≤
k ≤ v. In other words, the rows and columns of Wtk(v) are indexed by the t-subsets
and k-subsets of a set with v elements, and the (i, j) entry of this matrix is 1 if the
ith t-set is contained in the jth k-set, and 0 otherwise. The family of all k-subsets of
[v] is a t-(v, k,

(
v−t
k−t
)
) design and so the results and conjectures for t-(v, k, λ) designs

apply to it. In fact, Akbari, Khosrovshahi, and Mofidi [4] conjecture that, as long
as v 6= k + t, Wtk(v) has a 3-flow. They prove this conjecture for t = 2.

1.2. Summary of Main Results. We now turn to the linear lattices that are the
object of this paper. Let q be a prime power and Fq the field with q elements. Let
Ln(q) be the linear lattice (also known as the subspace lattice) of subspaces of the
n-dimensional vector space (Fq)n over the field of scalars Fq, ordered by inclusion.
For 0 ≤ m ≤ n, level m of Ln(q) is the set of subspaces of dimension m of (Fq)n.

For 0 < ` < m < n, let M = Mm
` be the incidence matrix of level ` versus level

m of Ln(q). That is, the rows and columns of M are indexed by the elements of
Ln(q) of dimension ` and m, respectively; and the (i, j) entry of M equals 1 if the
ith subspace of dimension ` is contained in the jth subspace of dimension m, and 0
otherwise.

The rank number for level 0 ≤ m ≤ n of Ln(q) is given by the q-binomial

coefficient
[
n
m

]
q

=
[n]q !

[m]q ![n−m]q !
, where [m]q = (qm − 1)/(q − 1) if m > 0, with

[0]q = 1, and where [m]q! =
∏m

i=0[i]q. Thus, M = Mm
` is an

[
n
`

]
q
×
[
n
m

]
q

matrix.

We consider M as a matrix over the real numbers. Also, because the linear lattice
is unimodal and symmetric around its middle level(s), we will assume that ` <
min{m,n−m} so that M has a nontrivial nullspace N (M).
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Our first result, that M admits a zero-sum flow (see Wilson [17] for a very
different proof), follows from a more general statement about bipartite graphs. If
G is a bipartite graph, we write G = (A,B, E) where A ∪ B is the set of vertices
of G, the set of edges is E, and all the edges have one end in A and one end in B.
For G = (A,B, E), the incidence matrix of elements of A versus those of B—also
called the biadjacency matrix of G—has rows and columns indexed by A and B
respectively, and with the (i, j) entry of the matrix equal to 1 if the ith vertex in
A is adjacent to the jth vertex in B.

Theorem 1. Suppose G = (A,B, E) is a bipartite graph. Suppose further that the
automorphism group Aut(G) acts transitively on B. Let M denote the incidence
matrix of elements of A versus those of B. If the nullspace of M is nontrivial, then
M admits a zero-sum flow.

As a vector space, (Fq)n is isomorphic to the field Fqn with qn elements; we
fix such an isomorphism to identify Fqn with (Fq)n. But Fqn also admits a multi-
plicative structure. In particular, the multiplicative subgroup of the field is cyclic:
F×qn = 〈x〉 for some x ∈ F×qn . We take advantage of this additional multiplicative
structure to prove our second result. (See Sarkis et al. [12] for another example
of the use of this algebraic method for proving combinatorial results in the linear
lattices.)

Theorem 2. Suppose n ≥ 4 and 2 ≤ m ≤ n−2, and let M = Mm
1 be the incidence

matrix of level 1 versus level m of the linear lattice Ln(q). If m | n, then M admits
an ([m]q + 1)-flow. If n−m | n, then M admits an ([n−m]q + 1)-flow. If neither
m nor n−m divide n, then M admits a 2- or 3-flow.

Many of our proofs will use the straightforward observation that a zero-sum flow
of Mm

` corresponds to a labeling of the m-dimensional subspaces of Ln(q) with
nonzero numbers such that, for each `-dimensional subspace V ∈ Ln(q), the sum
of the labels of those m-dimensional subspaces that contain V equals zero. To
illustrate, we end this section with a quick proof of a stronger version of Theorem
2 when m = 2. The proof uses known results about spreads and parallelisms.

A spread is a collection of 2-dimensional subspaces of Ln(q) such that every
subspace of dimension 1 is contained in exactly one of the 2-dimensional subspaces.
A parallelism or a packing is a partition of level 2 of Ln(q) into spreads. It is known
that a parallelism exists if n is even and q = 2 (Baker [8], and Wettl [16] who gives
a different construction) or if n ≥ 4 is a power of 2 and q is an arbitrary prime
power (Denniston [11] for n = 4 and Beutelspacher [9] for the general case).

Special Case of Theorem 2. Suppose n ≥ 4, and let M = M2
1 be the incidence

matrix of level 1 versus level 2 of the linear lattice Ln(q). If n is even and q = 2,
or if n is a power of 2 and q is an arbitrary prime power, then M admits a 2- or
3-flow.

Proof. Given a parallelism with an even number of spreads, assign +1 to each
subspace in half of the spreads and −1 to the rest to get a 2-flow for M . If the
number of spreads is odd, then first assign +2 to the subspaces in one spread and
−1 to the subspaces in two other spreads. Complete a 3-flow for M by assigning
+1 to the subspaces in half of the remaining spreads and −1 to the rest of the
subspaces. �
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2. Bipartite graphs with high regularity

In this section, we prove Theorem 1 by associating flows with vertex labels, and
by showing that the bipartite graph’s automorphism group allows us to permute
these labels sufficiently so that each vertex gets a nonzero label.

Lemma 3. Let F be an infinite field. Suppose V ⊆ Fn is a vector subspace with
the property that for each 1 ≤ i ≤ n, V contains a vector ~vi whose ith entry is
nonzero. Then V contains a vector whose entries are all nonzero.

Proof. We proceed by induction to show that, for each 1 ≤ i ≤ n, there exists a
vector ~wi ∈ V whose first i entries are all nonzero; in that case ~wn is the vector we
seek. Clearly, ~w1 = ~v1 satisfies this property. Assume that for some 1 ≤ i ≤ n− 1,
such a ~wi ∈ V exists. Consider the set {~wi + α~vi+1 | α ∈ F}. This is an infinite
set. However, for each 1 ≤ j ≤ i+ 1, there exists at most one αj ∈ F such that the
jth entry of ~wi +αj~vi+1 equals zero. Therefore, there exists infinitely many vectors
of the form ~wi + α~vi+1 whose first i+ 1 entries are all nonzero. �

Proof of Theorem 1. Recall that the incidence matrix M has its rows indexed by
A and its columns by B. Let |B| = n. Then the nullspace N (M) is a subspace of
Qn. Given ~v ∈ Q and b ∈ B, let ~v(b) ∈ Q be the entry of ~v indexed by b; that is, if
b corresponds to the ith column of M , then ~v(b) is the ith entry of ~v. Since M is a
{0, 1}-matrix, then

(1) ~v ∈ N (M) ⇐⇒ for each a ∈ A,
∑

(a,b)∈E

~v(b) = 0.

In other words, a vector in the nullspace of M corresonds to a labeling of the vertices
in B such that, for each a ∈ A, the sum of the labelings of vertices in B that are
adjacent to a equals zero.

An automorphism ϕ ∈ Aut(G) is a permutation of A and of B such that (a, b) ∈
E if and only if (ϕ(a), ϕ(b)) ∈ E. For ϕ ∈ Aut(G) and ~v ∈ N (M), define ~vϕ ∈
N (M) by ~vϕ(b) = ~v(ϕ−1(b)). To verify that ~vϕ is indeed a nullspace vector, note
that for each a ∈ A,∑

(a,b)∈E

~vϕ(b) =
∑

(a,b)∈E

~v(ϕ−1(b))

=
∑

(ϕ−1(a),ϕ−1(b))∈E

~v(ϕ−1(b))

= 0

The second equality follows from the fact that, since ϕ−1 ∈ Aut(G), then (a, b) ∈ E
if and only if (ϕ−1(a), ϕ−1(b)) ∈ E.

Since N (M) is nontrivial, there must exist ~v ∈ N (M) and b1 ∈ B such that
~v(b1) 6= 0. For an arbitrary b2 ∈ B, let ϕ ∈ Aut(G) such that ϕ(b1) = b2. Such
a ϕ exists because Aut(G) acts transitively on B. Thus ~vϕ has the property that
~vϕ(b2) = ~v(b1) 6= 0. By Lemma 3, the result follows. �

Corollary 4. Suppose Mm
` is the incidence matrix of level ` versus level m of the

linear lattice Ln(q). If ` < min{m,n−m}, then Mm
` admits a zero-sum flow.
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3. Orbits in Ln(q)

Our proof of Theorem 2 relies on a group action on Ln(q) that we study in more
detail next. We are in particular interested in the orbit sizes under this action.

Continue to denote by x a generator of the multiplicative group of the field Fqn .
That is, x is an element of Fqn of order |x| = qn − 1. Additionally, x is a primitive
element of the field extension Fqn/Fq. Thus, x is the root of a monic irreducible
polynomial mx(t) ∈ Fq[t] of degree n. We fix an isomorphism (Fq)n ∼= Fqn and, by
abuse of notation, we use x to denote as well the corresponding vector in (Fq)n.

Consider the action of F×qn = 〈x〉 on Ln(q) defined as follows: if V ∈ Ln(q), then

xi · V = {xi~v | ~v ∈ V }. It is straightforward to verify that this is indeed a group
action, and that the action preserves rank.

Since Fq ⊂ Fqn , some vectors are also scalars.

Lemma 5. The vector xi is a scalar if and only if [n]q | i.

Proof. We have xi ∈ Fq ⇐⇒
(
xi
)q

= xi ⇐⇒ xi(q−1) = 1 ⇐⇒ |x| = qn − 1 |
i(q − 1) ⇐⇒ (qn − 1)/(q − 1) | i, as desired. �

Corollary 6. The vectors xi and xj are scalar multiples of each other if and only
if [n]q | i− j.

Corollary 7. The 1-dimensional subspaces span{xi} and span{xj} are equal if and
only if [n]q | i− j. In particular, the 1-dimensional subspaces of Ln(q) are given by
span{xi} for 0 ≤ i ≤ [n]q − 1.

Example. Suppose n = 4 and q = 3. The polynomial t4+t+2 ∈ F3[t] is irreducible.
Suppose x is one of its roots. Then F3[x] ∼= F34 , and F×34 = 〈x〉. Noting that

{1, x, x2, x3} forms a basis for F3[x] over F3, consider the isomorphism F3[x] →
(F3)4 given by xi−1 7→ ei, the ith standard basis vector, where 1 ≤ i ≤ 4.

The action of multiplication by x on (F3)4 is a linear transformation whose
matrix representation in the coordinates of the standard basis is

X =


0 0 0 1
1 0 0 2
0 1 0 0
0 0 1 0


Following Lemma 5, we see that X [4]3 = X40 = 2I4 and X34−1 = I4. Note also
that the characteristic polynomial of X is t4 + t + 2, and that det(X) = 2, the
field-theoretic norm of x over F3.

The action of 〈x〉 on L4(3) can now be computed in one of two ways: either by
writing all nonzero vectors as powers of x, or by multiplying coordinatized vectors by

X. For instance, if V = span{
(
1 1 0 1

)T } then x ·V = span{
(
1 0 1 0

)T }.
For V ∈ Ln(q), denote by OV the orbit of V under this action.

Lemma 8. For V ∈ Ln(q), F×q ⊆ stab〈x〉(V ), and so |OV | | [n]q.

Proof. Clearly, if a ∈ Fq then a · V = V . Thus |OV | = | 〈x〉 |/|stab〈x〉(V )| =
qn − 1

k(q − 1)
, where k = |stab〈x〉(V ) : F×q |. �

Corollary 7 shows that, restricted to the 1-dimensional subspaces of Ln(q), the
action of multiplication by x is transitive. Hence, if dim(V ) = 1 then |OV | = [n]q.
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Lemma 8 shows that [n]q is the largest possible orbit size. We continue to explore
the allowable values of |OV |.

Lemma 9. Suppose V ∈ Ln(q) is a subspace of dimension ` > 0, and |OV | = d.
Then

[
Fq(xd) : Fq

]
≤ `.

Proof. Suppose {xb1 , · · · , xb`} form a basis for V , where b1, · · · , b` are integers.
Then {xb1+d, · · · , xb`+d} form a basis for xd ·V . Since V = xd ·V , there must exist
an `× ` matrix A with entries in Fq such that

A

x
b1

...
xb`

 =

x
b1+d

...
xb`+d

 = xd

x
b1

...
xb`


In other words, xd is an eigenvalue of a A, and hence the root of a polynomial over
Fq of degree `. �

Corollary 10. Suppose V ∈ Ln(q) is a subspace of dimension ` > 0 such that
` is smaller than the smallest divisor of n other than 1. Then |OV | = [n]q. In
particular, if n is prime, then |OV | = [n]q for all V 6= {0}, (Fq)n.

Proof. If |OV | = d then
[
Fq(xd) : Fq

]
must be a proper factor of n, and so it must

equal 1. Thus xd ∈ Fq, and so by Lemma 5, [n]q | d. �

Suppose that r | n and V ∈ Ln
r

(qr). Thus V is a vector space over Fqr of
dimension at most n/r. Since Fqr is itself a vector space of dimension r over Fq,
then V is a vector space over Fq of dimension at most n. By identifying both the
n
r -dimensional subspace of Ln

r
(qr) and the n-dimensional subspace of Ln(q) with

Fqn , we get a natural embedding Ln
r

(qr) ⊂ Ln(q). In that case, the action of F×qn
restricts naturally to Ln

r
(qr), so that if V ∈ Ln

r
(qr) then OV ⊂ Ln

r
(qr) as well;

moreover, by Lemma 8, |OV | | [nr ]qr .

Proposition 11. Suppose V ∈ Ln(q) is an m-dimensional subspace. Let d = |OV |
and Fq(xd) = Fqr for some r | n. Then V = ⊕k

i=1x
aiFqr for some 0 ≤ a1, · · · , ak ≤

[n]q − 1 such that m = kr. In particular, V is a k-dimensional subspace of Ln
r

(qr).
Additionally, |OV | = [n]q/[r]q = [nr ]qr .

Proof. Let {xa1 , · · · , xam} be a basis for V over Fq for some 0 ≤ a1, · · · , am ≤
[n]q − 1. Since xd · V = V , then for each 1 ≤ i ≤ m and each j ∈ Z, we have
xaixjd ∈ V . Thus, xaiFqr ⊆ V as well, since Fqr = Fq(xd) is spanned by {xjd | j ∈
Z}. Clearly, V ⊆

∑m
i=1 x

aiFqr because {xa1 , · · · , xam} span V , so in fact V =∑m
i=1 x

aiFqr . Note that xaiF×qr are cosets of F×qr in F×qn , and so they either are
distinct or coincide. By reordering if necessary, suppose without loss of generality
that a1, · · · , ak are representatives of the distinct cosets among {aiF×qr | 1 ≤ i ≤ m}.
Then V = ⊕k

i=1x
aiFqr ∈ Ln

r
(qr), as desired. To prove the final claim, first note

that F×qr ⊆ stab〈x〉(V ) by Lemma 8. Also, if xb ∈ stab〈x〉(V ), then so is xe, where e
is the remainder of b upon division by d. Since e < d and xe · V = V , we conclude
that e = 0, and so stab〈x〉(V ) = F×qr . �

Corollary 12. For 0 ≤ m ≤ n, there exists an m-dimensional subspace V ∈ Ln(q)
with |OV | < [n]q if and only if gcd(m,n) > 1. In that case V ∈ Ln

r
(qr) for some

1 < r | gcd(m,n).



ZERO-SUM FLOWS OF THE LINEAR LATTICE 7

Proof. If |OV | = d < [n]q, then by Lemma 5, Fq(xd) = Fqr ) Fq. In that case,
Proposition 11 implies that 1 < r | gcd(m,n). Conversely, if gcd(m,n) > 1, let
r = gcd(m,n), k = m/r and V = ⊕k

i=1x
iFqr ; then V ∈ Ln

r
(qr) and |OV | | [nr ]qr by

Lemma 8. �

We end this section by determining when an orbit is the only one of its size on
a given level. The result will be useful in the proof of the first part of Theorem 2.

Lemma 13.

[
n
2
m
2

]
q2

[ n
m ]

q

< q
m
2 (m−n).

Proof. For any k > 0,
[k2 ]q2

[k]q
=

(q2)
k
2 −1

q2−1
qk−1
q−1

=
1

q + 1
. Therefore,

[k2 ]q2 !

[k]q!
=

k
2∏

i=0

[k−2i2 ]q2

[k − 2i]q

k
2−1∏
j=0

1

[k − (2j + 1)]q
=

1

(q + 1)
k
2

k
2−1∏
j=0

1

[k − (2j + 1)]q

Substituting, we get[
n
2
m
2

]
q2[

n
m

]
q

=

(
1

(q+1)
n
2

∏n
2−1
j=0

1
[n−(2j+1)]q

)
(

1

(q+1)
m
2

∏m
2 −1
j=0

1
[m−(2j+1)]q

)(
1

(q+1)
n−m

2

∏n−m
2 −1

j=0
1

[(n−m)−(2j+1)]q

)

=

(∏m
2 −1
j=0

1
[n−(2j+1)]q

)
(∏m

2 −1
j=0

1
[m−(2j+1)]q

) =

m
2 −1∏
j=0

qm−(2j+1) − 1

qn−(2j+1) − 1
< q

m
2 (m−n)

�

Lemma 14. If n = 4, then there are q orbits of size [4]q at level 2 of L4(q). If
n ≥ 5 and 2 ≤ m ≤ n− 2, then there are at least 5 orbits of size [n]q at level m.

Proof. Proposition 11 shows that there is exactly one orbit of size [2]q2 at level 2

of L4(q), while the rest have size [4]q. There are
[
4
2

]
q

total subspaces at level 2,

and so the number of 2-dimensional subspaces in L4(q) whose orbits have size [4]q
equals[

4

2

]
q

− [2]q2 =
[4]q[3]q

[2]q
− [2]q2 = ([3]q − 1)[2]q2 = q(q + 1)(q2 + 1) = q[4]q

If n = 5 then the result follows by Corollary 10, since all nontrivial orbits have
size [5]q, and the number of such orbits at level m = 2, 3 equals

[
5
2

]
q
/[5]q = q2+1 ≥

5.
Suppose n ≥ 6. By Corollary 12, every subspace V ∈ Ln(q) of dimension m with

orbit size |OV | < [n]q is in fact a subspace of Ln
r

(qr) for some divisor 1 < r | (m,n).
Our proof will rely on an upper bound for the proportion of such subspaces with
“small” orbits.

Note that if r | s | n then Ln
s

(qs) ⊆ Ln
r

(qr) ⊆ Ln(q). So for counting purposes,
we need only consider the prime divisors of (m,n) in the computation that follows.
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Applying Lemma 13, we see that the proportion of subspaces at level m whose
orbits have size less than [n]q is∑

r|(m,n),r prime

[
n
r
m
r

]
qr[

n
m

]
q

≤
log2(n)

[
n
2
m
2

]
q2[

n
m

]
q

< log2(n)q
m
2 (m−n) ≤ log2(n)q2−n <

1

4

Since
[
n
m

]
q
≥
[
n
2

]
q

= [n]q
[n−1]q
[2]q

≥ [n]q
[5]2
[2]2

> 10[n]q, then there are more than
3
4 · 10[n]q = 7.5[n]q subspaces at level m with orbit size [n]q. �

Suppose V ∈ Ln(q) is an m-dimensional subspace. Call OV lonely if no other
orbit at level m of Ln(q) has size |OV |. The orbits at levels 1 and n− 1 are lonely
by Corollary 12. The next result shows that, in a sense, these are the only lonely
orbits.

Proposition 15. Suppose n ≥ 4 and 2 ≤ m ≤ n − 2. Then there is precisely one
lonely orbit at level m of Ln(q) if and only if either m nor n−m divides n. In that
case, the lonely orbit is of size [ nm ]qm (if m | n) or [ n

n−m ]qn−m (if n−m | n).

Proof. Suppose that m | n. Then the subspace V = Fqm is m-dimensional over Fq,
and OV is the only orbit of size [ nm ]qm at level m of Ln(q) because OV is the only
orbit at level 1 of L n

m
(qm). Similarly, if m′ = n−m | n and V ′ = Fqm′ , then OV ′ is

the only orbit at level m′ of orbit size [ n
m′ ]qm′ . By Proposition 11, there is precisely

one orbit OV at level m of Ln(q) of size [ n
m′ ]qm′ , namely, the orbit at level ( n

m′ − 1)

of L n
m′

(qm
′
).

To prove that OV is the only lonely orbit at level m, we note from Proposition 11
that if W /∈ OV is any other m-dimensional subspace, then W ∈ Ln

r
(qr) for some r

that is a proper divisor of m and n−m. In that case, |OW | = [nr ]qr . Additionally,
since either n

m > 1 or n
n−m > 1 is a proper divisor of n

r , we must have n
r ≥ 4. Then

by Lemma 14, OW is not the only orbit at level m
r of Ln

r
(qr) of size [nr ]qr .

Suppose that neither m nor n−m divide n. If n = 4 then the result is vacuously
true, and if n = 5 then the result follows from Corollary 12, since all orbits would
be of size [5]q. Also, if n ≥ 5 and V ∈ Ln(q) is a subspace of dimension m with
|OV | = [n]q, then Lemma 14 implies OV is not lonely. We proceed by induction on
n to prove the result for the case |OV | < [n]q. Suppose for some n ≥ 6 the result is
true for L4(q), · · · ,Ln−1(q). If |OV | < [n]q, then V is an m

r -dimensional subspace
of Ln

r (qr) for some 1 < r | (m,n) by Proposition 11. Note that neither m
r nor

n
r −

m
r divides n

r . This necessarily implies n
r ≥ 5. So by the inductive hypothesis,

OV is not the only orbit of size |OV | in Ln
r

(qr).
�

4. The incidence matrix Mm
1

In this section, we show that the incidence matrix Mm
1 between levels 1 and m

of the linear lattice Ln(q) admits a zero-sum 2- or 3-flow if neither m nor n −m
divides n. In case m or n −m divides n, then Mm

1 admits an ([m]q + 1)-flow or
([n−m]q + 1)-flow, respectively.

For an `-dimensional subspace V ∈ Ln(q), define the shadow of V at level i by
4i(V ) = {U ∈ Ln(q) | dim(U) = i and U ⊆ V }, and the (total) shadow of V
by 4(V ) = ∪i≤`4i(V ). Similarly, define the shade of V at level i by ∇i(V ) =
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{W ∈ Ln(q) | dim(W ) = i and V ⊆ W}, and the (total) shade of V by ∇(V ) =
∪i≥`∇i(V ).

As in the proof of Theorem 1, it will be convenient to think of vectors in the
nullspaceN (M) as labelings of the subspaces of Ln(q) of dimension m such that, for
each subspace V ∈ Ln(q) of dimension 1, the sum of the labelings of all subspaces
of ∇m(V ) equals zero.

Lemma 16. Suppose V,W ∈ Ln(q). Then |∇(V ) ∩ OW | = |∇(xi · V ) ∩ OW | and
|4(W ) ∩ OV | = |4(xi ·W ) ∩ OV | for all i.

Proof. This follows directly from the fact that V ⊂W ⇐⇒ xi · V ⊂ xi ·W . �

The previous Lemma asserts that every element of OV is contained in the same
number of elements of OW , and conversely every element of OW contains the same
number of elements of OV . So we define these numbers to be, respectively, the
incidence number of OV to OW and the incidence number of OW to OV , and
denote them |OV : OW | and |OW : OV |.

Corollary 17. Suppose V,W ∈ Ln(q). If |OV : OW | > 0 then |OV |/|OW | = |OW :
OV |/|OV : OW |.

Proof. Since each element of OV is contained in |OV : OW | elements of OW , there
are in total |OV | · |OV : OW | containments from OV to OW . Similarly, there are
|OW | · |OW : OV | containments from OW to OV . Clearly, these numbers should be
equal. �

Corollary 18. Suppose V,W ∈ Ln(q) with 1 = dim(V ) < dim(W ) = m, and
OW is a lonely orbit. If m | n then |OV : OW | = 1, and if n − m | n then

|OV : OW | = [m]q
[n−m]q

.

Proof. Note that |OV | = [n]q by Corollary 7, and |OW : OV | =
[
m
1

]
q

= [m]q. Thus

|OV : OW | = |OW : OV | · |OW |/|OV | = |OW | [m]q
[n]q

. The result now follows from

Proposition 15. �

Corollary 19. Suppose n ≥ 5, V ∈ Ln(q) with dim(V ) = 1, and 2 ≤ m ≤ n − 2.
Then there exist at least 5 distinct orbits at level m such that the incidence number
of OV to each of these orbits equals [m]q.

Proof. By Lemma 14, there are at least 5 orbits on level m of size [n]q each. If OW

is one such orbit, then Corollary 17 implies |OV : OW | = |OW : OV | = [m]q. �

In light of the uniformity of the incidence degrees between orbits, it will be
useful to consider an incidence matrix of orbits instead of subspaces. Given levels

` and m of Ln(q) with 0 < ` < m < n, consider the matrix M̂ = M̂m
` whose rows

are indexed by the distinct orbits of subspaces of dimension `, and whose columns

are indexed by the distinct orbits of subspaces of dimension m. The entry in M̂

corresponding to row OV and column OW equals |OV : OW |. We will call M̂ the
orbit incidence matrix from level ` to m.

Lemma 20. Suppose M = Mm
` and M̂ = M̂m

` are the incidence and orbit incidence

matrices, respectively, from level ` to m of Ln(q). If M̂ has a k-flow for some integer
k > 1, then so does M .
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Proof. Recall that we can think of a vector in the nullspace of M as a labeling of
the subspaces of dimension m in Ln(q) such that, for each subspace V ∈ Ln(q) of
dimension `, the sum of labels of all dimension-m subspaces in ∇V equals zero.
Let W1, · · · ,Ws be representatives of the distinct orbits of level m. Suppose ~w =(
w1 · · · ws

)T
is in the nullspace of M̂ . If W ∈ OWi

, assign to W the label
wi. The proof will be complete when we show that this labeling corresponds to
a vector in the nullspace of M . Suppose V ∈ Ln(q) is a subspace of dimension
`. By Lemma 16, for each 1 ≤ i ≤ s, the sum of the labels in ∇V ∩ OWi equals
|OV : OWi

|wi. Thus, the sum of labels of all dimension-m subspaces in ∇V equals∑
i |OV : OWi

|wi. However,
∑

i |OV : OWi
|wi is also the dot product of ~w with the

row of M̂ indexed by OV , and so it equals 0. �

Lemma 21. Suppose A is a 1× s matrix with the property that if a is an entry of
A, then A has more than one entry that equals a. Then A has a 2- or 3-flow.

Proof. Suppose without loss of generality that A =
(
A1 A2 · · · A`

)
, where for

each 1 ≤ i ≤ `, Ai =
(
ai · · · ai

)
is a 1× si matrix with si > 1 and ai ∈ R. For

each i, construct a 1× si vector ~vi as follows. If si is even, let ~vi be a vector with
si/2 entries equal 1 and the remaining si/2 entries equal −1. If si is odd, let ~vi
be a vector with one entry equal 2, (si − 3)/2 entries equal 1, and the remaining

(si + 1)/2 entries equal −1. Then
(
~v1 ~v2 · · · ~v`

)T
is in the nullspace of A. �

Corollary 22. Suppose A is a 1× s matrix with positive integer entries and s ≥ 5
such the smallest entry of A appears exactly once, the largest entry appears with a
multiplicity other than 2, and each of the remaining entries appears with multiplicity
at least 2. Suppose also that the smallest entry divides the largest entry. Then A
admits a (k + 1)-flow, where k is the ratio of the largest to smallest entry of A.

Proof. Write A =
(
a1 a2 · · · as

)
, and suppose without loss of generality that

a1 ≥ a2 ≥ a3 ≥ · · · > as. Then
(
a2 a3 · · · as−1

)
satisfies the hypothesis

of Lemma 21, and so it admits a 2- or 3-flow
(
y2 y3 · · · ys−1

)T
. Therefore,(

−1 y2 y3 · · · ys−1
a1

as

)T
is an (a1

as
+ 1)-flow of A. �

Proof of Theorem 2. Let M = Mm
1 , where n ≥ 4 and 2 ≤ m ≤ n − 2. Then

M̂ = M̂m
1 is a 1× s matrix by Corollary 7. By Lemma 20, any k-flow of M̂ can be

extended to a k-flow of M , so it is sufficient to prove the results for M̂ .

Suppose m or n −m divides n. If n = 4 and q = 2, then M̂ =
(
[2]2 [2]2 1

)
,

and so
(
1 −2 [2]2

)T
is a ([2]2+1)-flow of M̂ . If n = 4 and q > 2, or if n ≥ 5, then

Lemma 14 and Corollary 19 imply that the largest entry of M̂ is [m]q, and that entry
appears with multiplicity at least 3. Additionally, Proposition 15 and Corollary 18

imply that the smallest entry of M̂ is 1 (if m | n) or
[m]q

[n−m]q
(if n−m | n), and that

entry appears with multiplicity 1. Finally, Proposition 15 implies that each of the

remaining entries of M̂ has multiplicity at least 2. In other words, M̂ satisfies the
hypothesis of Corollary 22, and hence admits an ([m]q + 1)-flow (if m | n) or an
([n−m]q + 1)-flow (if n−m | n).

If neitherm nor n−m divide n, then by Proposition 15, M̂ satisfies the hypothesis
of Lemma 21, and so admits a zero-sum 2- or 3-flow. �

The orbit-based method described in the paper does not preclude a 2- or 3-flow
for Mm

1 in the case where m or n − m divides n. Given the highly symmetric
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structure of the linear lattice, we conclude with the conjecture that Mm
1 must have

a 2- or 3-flow for all 2 ≤ m ≤ n− 2.
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